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PRE FACE

This is the forty-eighth in a series of reports growing out of the study of

radar cross sections at The Radiation Laboratory of The University of Michigan.

Titles of the reports already published or presently in process of publication are

listed on the following pages.

When the study was first begun, the primary aim was to show that radar

cross sections can be determined theoretically, the results being in good agreement

with experiment. It is believed that by and large this aim has been achieved.

In continuing this study, the objective is to determine means for computing

the radar cross section of objects in a variety of different environments. This has

led to an extension of the investigation to include not only the standard boundary-

value problems, but also such topics as the emission and propagation of electro-

magnetic and acoustic waves, and phenomena connected with ionized media.

Associated with the theoretical work is an experimental program which

embraces (a) measurement of antennas and radar scatterers in order to verify data

determined theoretically; (b) Investigation of antemna behavior and cross section

problems not amenable to theoretical solution; (c) problems associated with the

design and development of microwave absorbers; and (d) low and high density

ionization phenomena.

R. E. Hiatt
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I

INTRODUCTION

1.1 Preliminary Remarks

This is the second in a series of reports aimed at summarizing the available

information about the electromagnetic scattering properties of selected bodies of

simple shape. The first body considered was the sphere (Goodrich et al, 1961),

which from the bibliographer's standpoint must certainly be the most popular of all

scattering shapes. The present work is devoted to the cone which, while less abun-

dantly represented in the literature, still presented a serious selection problem. In

the case of the sphere it was immediately obvious that a large amount of related

reference material would have to be omitted or discussed only briefly if a document

of manageable size were to result. With the cone, the temptation to deal with the

subject exhaustively is stronger, but still it was felt that such an attempt would

jeopardize the objectives of the program which are to present in readily usable form

available theoretical and experimental results in sufficient detail to satisfy most

engineering needs and provide a useful guide to those who wish to delve more deeply

into the subject. Hence a certain amount of arbitrariness was exercised not only in

deciding what material was to be excluded but also in the relative emphasis given

those topics which survived this editorial surgery.

The present work is mainly concerned with the scattering of time harmonic

electromagnetic waves by a perfectly conducting cone, either finite or Infinite in

ii ii1
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extent, embedded in a homogeneous, isotropic medium. The corresponding scalar

problem involving scattering of acoustic waves by "hard" and "soft" cones is also

considered. The arbitrary but prevalent division into scattering and radiation pro-

blems, depending on whether the source of energy is off or on the cone surface, is

observed. Thus in restricting attention to scattering problems, a large amount of

work (e.g. Felsen, 1957c; Bailin and Silver, 1956; Goodrich et al, 1959) on the radi-

ation from various slot configurations or dipole distributions on conical surfaces is

omitted.

The choice of the cone as the second share to be treated in this series was

dictated by two reasons. In the first place the infinite cone is one of the few shapes

for which an exact theoretical treatment is possible. Since the approximations which

are introduced in order to make tra' :able the scattering problem for more compli-

cated bodies either arise from or are tested in those few cases where exact solutions

exist, familiarity with these cases seems essential for an understanding of the

modern methods of handling scattering problems. The second reason for choosing

the cone lies in the fact that the finite cone is a possible re-entry vehicle configura-

tion, so that its scattering properties are of more than casual interest.

Unlike the spbere for which exact as well as approximate theoretical results

can be compared with experiment, the infinite cone, for which an exact theory is

also available, is clearly an untenable experimental shape; on the other hand, the

finite cone, for which a considerable amount of experimental data is available, has

2
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thus far resisted exact treatment. At one time it was felt that results for the infinite

cone would be useful in predicting the finite cone behavior. While this is still true

in a sense (tip scattering), it is now realised that the most vital scattering charac-

teristic of the finite cone is its termination, which makes it fundamentally different

from the infinite cone. Nevertheless, in keeping with the historical development of

the problem, both finite and infinite cones will be treated here.

1.2 Historical Survey

Since the circular cone is a level surface (8 = 0o ) in spherical coordinates it

was a natural step from the development of spherical harmonics of nonintegral order

z

I x~~ = co'sn

X x = rcos sin

/

FIGURE 1
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in the latter part of the nineteenth century to the investigation of potential problems

for the cone. Although Green claimed to have found the potential near the vertex of

a conducting cone in an electrostatic field as long ago as 1828 (Green, 1828; Mac-

donald, 1900a) this work was never published in detail and it was not until much later

that the problem was adequately treated in the literature (Mehler, 1870; Heine, 1878;

Hobson, 1889; Macdonald, 1900a). Work on the dynamic problem began more re-

cently. Macdonald, in his aptly designated prize essay (Macdonald, 1902), discussed

the problem of a perfectly conducting cone excited by what is now known as an axial

(or vertical) electric dipole (dipole moment oriented along the axis of symmetry).

With remarkable insight, Macdonald formulated and solved the problem as a series

of spherical harmonics whose coefficients he determined from the known solution of

the potential problem. Since he never worked directly with the Helmholtz equation

but with a related partial differential equation which he derived from Maxwell's equa-

tions he apparently was unaware of (or at least unconcerned with) the fact that his

work also held the solution of the scalar Dirichlet problem: a soft cone with an

acoustic point source on the axis of symmetry. The fact that electromagnetic scat-

tering problems for cones and spheres with axial dipole sources can be formulated

in terms of Dirichlet and Neumann scalar scattering problems follows from the

representation of an electromagnetic field in terms of radial Hertz vectors which

are closely related to Debye potentials. This work, for the most part more recent

than Macdonald's, is discussed in more detail in the next section where one of the

resulting scalar problems is treated.
4
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The solution of the scalar Diriohlet problem was presented by Carslaw (1910)

in essentially the same form as Macdonald's although the applicability of Macdonald's

result was apparently unknown to him. A few years later Carslaw (1914) published

the solution of the soalar Neumann problem for the infinite cone. In this later paper

Carslaw indicates awareness of Macdonald's work, calling attention to some weak

points in the derivation (though the result is correct). The objection concerned Mac-

donald's argument that the coefficients in the series solution of the wave equation

were the same as those for the corresponding potential problem, I. e. were indepen-

dent of k. Subsequently Macdonald (1915) demonstrated the validity of his argument

and this was acknowledged by Carslaw (1916). Nevertheless Carslaw's treatment is

more elegant, if not more rigorous, and has since served as the classic work on the

problem to the extent that Macdonald's work is apparently overlooked by modern

writers on the subject.

Following Carslaw's thorough treatment of the scalar problem, it was not

until the resurgence of interest in classical scattering problems occasioned by the

development of radar that the cone received further study. In a series of reports,

Hansen and Schiff (1948) discussed a number of scattering problems including that of

finding the field scattered by a perfectly conducting cone when a plane electromag-

netic wave Is incident along the axis of symmetry. This is fundamentally a vector

problem since the vector plane wave has no simple representation in terms of mean-

ingful scalar sources. They constructed their solution in the form of infinite series

5



THE UNIVERSITY OF MICHIGAN
3648-2-T

of Legendre functions of non-integral order using Hansen's vector wave functions

(Stratton, 1941; Mentzer, 1955).

Evaluating the coefficients, however, involved a rather questionable use of

asymptotic forms which makes the procedure subject to criticism even though the

correct residts are found. An additional difficulty is present when the source is at

infinity (plane wave incidence), rather than at some finite distance from the vertex,

since the far field expressions are divergent sums. This is also true in the scalar

case for plane wave incidence (Siegel and Alperin, 1952). Special summation tech-

niques were introduced by Schensted (1953) to obtain meaningful results for the back-

scattering cross section in both vector and scalar cases for large and small cone

angles. (See also Siegel et al 1953a, 1955b). These cases were treated Indepen-

dently by Felsen (1953, 1955, 1957a, b). He found the Green's functions for scalar

and vector problems and based his calculations of back scattering cross section for

small and large cone angles on these more general results. The calculations agreed

with the results of Schensted (1953) and Siegel et al (1953a, 1955b) but by working

with Integral representations of the radial functions which occur, Felsen avoided the

necessity of handling divergent sums. However, when the quantities of interest are

the field components rather than the cross section, both series and Integral expres-

sions have drawbacks. In particular, any attempt to calculate the currents on the

cone's surface meets with additional convergence problems in the series expression

and a considerable complication of the integral expression.

6
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A slightly different method of constructing the vector Green's function, using

the Lorentz reciprocity theorem, was given by Bailin and Silver (1956), but calcula-

tions were carried out only for the radiation problem when the source is on the cone

surface.

The above results are given explicitly in Section 3. Although approximations

may be employed in evaluating the expressions for the field or the cross section, the

formulae are exact in the sense that they are obtained from the unique solution of a

well-set mathematical problem, and any particular calculation can be performed as

accurately as time, money and patience will permit. This is borne out in the recent

work of Goryanov (1961) who reports on extensive calculations of the scattered far

field when a plane electromagnetic wave is incident along the axis of symmetry of

the cone.

The preceding paragraphs just about complete the survey of existing exact

treatments of scattering by a semi-infinite circular cone. A more general problem,

scattering by an elliptic cone (of which the circular cone is a special case), has been

solved by Kraus and Levine (1961). Although of special interest in the limiting case

where the cone is a plane angular sector, their results are not particularly appro-

priate for the circular cone due to the extreme complexity of the series of products

of LamS functions in terms of which their solution is expressed.

Exact treatments of the finite cone problem are few indeed. Although there

are unoountably many ways in which the cone can be terminated, what little exact

7
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work that does exist deals almost exclusively with the spherically capped right cir-
+

cular cone This configuration is the intersection of two coordinate surfaces of the

same spherical coordinate system (r = a and 0- 0 in Fig. 2). Since the wave equa-0

tion is separable and solutions exist for each of the surfaces Individually, it is pos-

sible to divide space into two distinct regions (see Fig. 2) in which different series

/

/

FIGURE 2

representations of the field are employed depending on the conditions at the boun-

aries of the regions. Thus in I the series is chosen to satisfy a condition on the

+Referred to in some circles as the "spherical sector".
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cone whereas in II the representation must satisfy a condition on the relevant portion

of the surface of the sphere. On that part of the boundary of the two regions which

has no physical significance, the two representations must be equivalent. This mani-

feats itself as a condition sufficient to determine an infinite set of constants, but the

explicit determination usually requires the solution of an infinite system of linear

equations. This procedure was followed by Northover (1962) who considered the

problem of the scattering of electromagnetic energy when an electric dipole is ori-

ented along the axis of symmetry of a perfectly conducting spherically-capped cone.

A similar procedure was adopted by Rogers et al (1962) in considering the problem

of a plane electromagnetic wave incident along the axis of symmetry. Since the plane

wave is the limit of a transverse dipole, this problem is essentially different from

the one treated by Northover. The big drawback in both cases is the necessity of

dealing with Infinite systems of equations. A possibly fruitful way to handlA this

problem was proposed by Plonus (1961, 1962) in his treatment of the closely related

problem of calculating the radiation pattern of a biconical antenna.

A technique for finding the exact solution of the scalar wave equation satis-

fying Dlrichlet boundary conditions on the intersection of two surfaces in terms of

the solutions of the corresponding Dirichlet and Neumann potential problems for each

surface has been developed by Darling (1960) and applied to the spherically-capped

cone. The method is restricted to low frequencies since the soiution is expressed

in terms of an infinite series which converges only for frequencies in a bounded

9
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range (0 <k <k 0 ). Within the radius of convergence, however, the series repre-0

sents the exact solution.

Unfortunately, these exact treatments of the finite cone problem do not con-

stitute a sufficient base from which significant quantitative results can be obtained.

Since the finite cone, with various base terminations, is an object whose scattering

properties are of practical Importance, approximation methods have been developed

and experiments performed in order to obtain the desired numerical results.

Experiments are limited in that they yield results at particular frequencies

for particular models. The sensitivity of the field to small changes in frequency or

model size is difficult to determine since it is impractical (to say the least) to try to

provide a continuum of models or operating frequencies.

Theoretical approximations are also limited, though most often to a range of

frequencies rather than a particular frequency. The frequency spectrum is divided

roughly into three regions. The low frequency end of the spectrum (wavelength large

with respect to any linear dimension of the scatterer) is usually referred to as the

Rayleigh region. Clearly this has meaning only for finite bodies, for present pur-

poses, finite cones. Following the work of Rayleigh (1897) the far zone scattered

field is found to be proportional (to a first approximation) to the volume of the scat-

terer regardless of its detailed geometric configuration. Some refinements of this

theory as well as explicit results for the scattering cross section of a finite cone

have been given by Siegel (1959) and further extended by Siegel (1962, 1963).

10
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The high frequency end of the spectrum (wavelength short with respect to the

linear dimensions and radii of curvature of the scatterer) is generally referred to as

the optics region since it is in this limit that the laws of geometric optics are appli-

cable (see, for example, Born and Wolf, 1959). For many purposes, geometric op-

tics is too gross an approximation and refinements are sought. One such is the

physical optics approximation, which can be obtained from the integral representa-

tion of the field everywhere in space In terms of the field on the scatterer by using

the geometric optics approximation of the field on the surface of the scatterer. This

was applied to the cone by Spencer (1951) who attributes some of the work to P. M.

Austin. Hansen and Schiff (1948) cite an earlier version of Spencer's work which

also credits Crout, who worked with Austin at the M. I. T. Radiation Laboratory. A

general discussion of geometric and physical optics as applied to the computation of

back scattering (monostatic) radar cross sections is given by Kerr (1951). The

physical optics result for back scattering from a semi-infinite cone viewed nose-on

is given by Siegel and Alperin (1952). Although the applicability of physical optics

when the scattering object has infinite length is subject to considerable question, the

result was shown to be remarkably good when compared both with more exact theor-

etical results (Siegel et al, 1955b; Felsen, 1955) and experimental data (Sletten,

1952). More general results are given by Siegel at al (1955a) where bistatio physical

optics cross sections are given for both finite and infinite cones when the transmitter

is on the axis.

______________________________ 11
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In the case of finite cones, the physical optics approximation is least reliable

In determining the effect of the base, and since this is usually the dominant factor in

determining what the field will be, the need for an improvement over physical optics

is clear. This is provided for the flat-backed finite cone by the geometrical theory of

diffraction (or modified geometric optics) of Keller (1957, 1958, 1960) which takes

into account not only reflected rays but diffracted rays as well. Expressions for the

back scattered field and cross section as a function of angle of incidence (plane wave

excitation) are given by Keller (1960) for both Dirichiet and Neumann boundary con-

ditions on the cone in the scalar case, and for the perfectly conducting cone in the

electromagnetic case. This last result, In the case of nose-on incidence, was ob-

tained independently by Siegel (1959) and Siegel et al (1959).

Keller also gives results for a cone with a smoothly joined spherical base

(the "cone-sphere"), but these are not substantiated by experiment. In large measure

the disagreement is attributable to Keller's omission of any contribution from the

junction of the cone and sphere, where the radius of curvature Is discontinuous. It

Is now believed that physical optics gives a reasonable estimate of the direct return

from this region, but it is also true that no canonical problem which really bears on

this question has yet been solved.

Between the Rayleigh and optics regions lies the resonance region, where the

wavelength is comparable to some linear dimension of the scatterer. It is this re-

gion that offers the most difficulty to approximation methods. One approach to the

12
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problem of finding approximations which are useful here is to refine the small and

large wavelength approximations and effectively narrow the width of the resonance

region. More terms can be calculated in both the quasi-statlc series (of Senior and

Darling, 1963) and the modified optics results of Keller (1960) but when, if ever, the

regions of validity overlap Is not known. Another attempt to bridge the resonance

region gap based on physical reasoning is described by Siegel (1959) and Crispin et

al (1963) in the case of nose-on back scattering from flat-backed finite cones.

Though subject to the limitations previously mentioned, the importance of

experimental results should not be overlooked. Thus the work of Sletten (1952), 0lte

and Silver (1959), Keys and Primich (1959a, c, d) and Blore and Royer (1962) has

served not only to increase knowledge of scattering by particular cones but has also

played a valuable role in the development of approximate theoretical techniques.

It should be pointed out that some of the work referred to contains errors,

some typographical and some more serious. Attention is called to these errors in

the sections that follow and formulae presented explicitly have been corrected

(wherever possible) and converted to the uniform notation used throughout this re-

port.

In concluding this section the authors wish to extend appreciation to the many

members of the Radiation Laboratory who assisted in the preparation of this report

and especially to J. W. Crispin, Jr., formerly of the Radiation Laboratory, who pre-

pared an earlier version.
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II

EXACT SOLUTIONS

This section is devoted to the exact formulation and solution of the problems

of scattering of electromagnetic energy by a cone. The relation between vector and

scalar boundary value problems is examined.

In some cases, a single scalar function can be used to solve two meaningful

physical problems, one scalar and one vector. One such case is treated in detail.

2.1 Precise Formulation

The problem with which this report is concerned is that of finding the electric
+

and magnetic field vectors E and H (and quantities derived from them) external to

a perfectly conducting cone in the presence of various incident or primary fields.

The cone is assumed embedded in a homogeneous, isotropic and perfectly dielectric

medium of permeability I and permittivity c, which medium may be taken as free

space. The propagation constant, k, is simply related to IA and c as follows:

k = ( fm-, (2.1)

where X is the wavelength and w the frequency. The harmonic time factor e

is suppressed and MKS units are employed throughout. At all ordinary points in

space the behavior of the field quantities is governed by Maxwell's equations

+The following vector notation is used throughout: vectors of arbitrary magnitude

will be underlined, e.g. E; unit vectors will be denoted by carets, e.g. f; scalar
products indicated by dots, e.g. P o E; and vector products by wedges, e.g. '7 AE.

14
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VA E k~u"= 0'(2.2)

VAH + ME = -0, (2.3)

V7 E = V' H = 0. (2.4)

The homogeneous equations (2.2), (2.3) and (2.4) do not describe the field at

source points. The sources treated here will be either dipoles or plane waves, both

of which are defined below. The presence of the perfectly conducting cone is taken

into account by requiring that on the cone the tangential component of E must vanish.

With the addition of a radiation condition, which is necessary to ensure uniqueness,

it is possible to formulate a well-set boundary value problem directly in terms of the

electric field. It is customary, however, to introduce auxiliary functions from whict

the field quantities may be derived, and to formulate the problem in terms of these

new functions. A very natural way of introducing both the Hertz vectors and Debye

potentials stems from the derivation of the field quantities E and H in terms of a

vector potential A (see Stratton, 1941). If A and f are vector and scalar functions

of position such that

P 2 + k2)A = Vf (2.5)

then E and H can be defined in terms of A by

H_ -iVA, (2.6)

15
E -- H=V A . (2.7)

x Ac A A
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It is simple to show that E and H so defined satisfy Maxwell's equations. The

divergence condition (2.4) is satisfied because the divergence of a curl is identically

zero. Equation (2.3) is clearly satisfied since it is taken as the defining equat.on

for E, (2. 7). The remaining equation, (2.2), states, after substitution of (2. 1),

(2.6) and (2.7) that

VVVA - k2 VA =O0 (2.8)

This can be rewritten, making use of well known vector identities, as

V(P2 +k2) A = 0 (2.9)

which is satisfied by virtue of equation (2. 5).

Any electromagnetic field can be so derived; that Is, there exists a vector

potential (in fact an equivalence class of potentials) for any field. In particular,

there is a vector potential from which the field exterior to a conducting cone can be

obtained. However, rather than investigate the restrictions imposed on this poten-

tial function by regularity, single valuedness, and other physically-based conditions

on the field quantities, it is more customary to restrict the form of the potential and

phrase the problem in terms of this smaller class of potentials. Of special interest

is the construction of vector potentials from scalar potentials. In this regard if V1

is a scalar solution of the wave equation

S+ k 2)0 0 (2.10)
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and the vector potential A is restricted to be of the form

A =(2.11)

where a is a vector independent of "(i (but may be a function of position), then as

shown by Senior (1960), a must either be a constant or radial vector. (This seem-

ingly preferred status enjoyed by rectangular and spherical coordinate systems

results from the restrictions placed on A and does not pose any relativistic dilem-

mas.)

With the potential constructed in this way, the class of electromagnetic fields

that can be obtained is limited, but by introducing a second, independent, vector

potential subject to the same restrictions as the first it is possible to derive any

electromagnetic field from these two potentials as follows:

(2.12)A ---xV
A AA-2 A -1

where either

a) A 1 c.2

2 2
or

b) A, =0r.

2 2

In case a) c ib % constant vector (and may be taken to be of unit magnitude by

redefining I) 1l and1 2 are scalar wave functions, i.e. satisfying (2. 10), and the

2
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A, and A so determined are electric and magnetic Hertz vectors, usually denoted

by J1 and Trm respectively. If a rectangular cartesian coordinate system is ori-

ented so that c lies along the z axis, i. e. c I iz, then the rectangular field com-

ponents defined by (2.12) are

2I 2h
E ia H=- -wWx H -- x = e LX eyz

2 21
E ya--- u- ± 2 H = a-Y2 HL

y iiyaZ f y ayaz ft

E k2 f H =- -2+ (2.13)z Iz k z 8z2

In case b), r is the radius vector r - )S + yt + zý and0 and@ are
x y z' 1 2

again scalar wave functions. The functions ;1 and @2 are called Debye potentiali

and the A and A2 so defined are often referred to as radial Hertz vectors. The

spherical polar field components defined in (2.12) are

E a2 1 Hr= 822

r22

E9 8 2 (rV11+l Li 82 H 82(rj12) L1c *I

9 r MO sin 0 Of 0 r Mr80 sin0 of

E 1 a 2(r01 ) a- 12 1 a (rV 2) + a

o r 8rr 8i " o o rsinG 8r8 + 8-

(2.14)
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Note that if Vi 0 then Er-- 0, i. e. the electric field is transverse to any radius

vector (TE case), whereas if 02E 0 then Hr 0, i.e. the magnetic field is trans-

verse (TM case).

Actually the statement that any electromagnetic field can be written in terms

of two scalar functions using (2.12) with a) or b) is a bit too strong. Wilcox (1957)

proves the validity of the Debye potential representation of any field defined every-

where in a region between two concentric spheres. Bouwkamp and Casimir (1954)

establish a similar result for regions exterior to a sphere containing all currents

and demonstrate the equivalence of the Hertz vector and Debye potential represen-

tations as well (ef Sommerfeld, 1935). Nisbet (1955) shows that ordinary points with

in the sphere containing sources admit of a representation by two scalar functions

but not necessarily Debye potentials.

In cases which are not included in these rigorous treatments, it is usually

assumed that such a representation is valid and the justification is found in the rea-

sonableness of the consequences. Thus, in the case of the field scattered by an infi-

nite cone (a body which cannot be enclosed in a sphere however large) Debye poten-

tials still play an important role.

In formulating the boundary value problem in terms of scalar wave functions,

it is clear from (2. 14) that requiring either

-M and O2 -0

09=
0
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or

0, O nd P1I= 0

1=0

is sufficient to ensure that the boundary conditions E = E 0 at 0 = 9 are satis-r 0 o

fled. Wilcox (1957) proves that a condition sufficient to guarantee that E and H

satisfy the Silver-Miller radiation condition, viz.

0 o E = O H =O uniformly inr

where

O= r1m 4r{(A )+i kr1

is that E and H be formed from Debye potentials 0 1 and 02 as shown in (2.14) and

that these satisfy the scalar Sommerfeld radiation condition

r ---- r )r iko) 0 uniformlyin •.

Inthe usual formulation of a scattering problem, the total field is considered

as consisting of two terms, an incident or primary field (i. e. the field which would

exist were there no scattering object present) and a scattered field, which can be

thought of as a perturbation or correction term accounting for the presence of the

scatterer. It is therefore necessary to discuss the kinds of primary fields which are

of Interest. In most radar scattering problems, the target is assumed to be illum-

inated by an incoming plane wave with E and H transverse to the direction of propa-
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gation. In the mathematioal formulation, however, it Is often preferable to treat

sources at a finite distance from the scatterer even though it involves introducing

singularities (of a prescribed nature) Into the field expressions. This is particu-

larly true when the scatterer is infinite in extent, as is the circular cone treated in

the next section. In the first place, the radiation condition is imposed uniformly on

all field quantities when all sources are a finite distance from the origin, whereas

with plane wave excitation only the scattered field or perturbation term obeys the

radiation condition, and if the scatterer is not finite in extent, this term must be fur-

ther separated into a reflected term which does not satisfy the radiation condition

and a diffracted term which does. Secondly, by considering sources at finite dis-

tances, it is sometimes possible with the help of Debye potentials, to solve a mean-

ingful scalar (acoustic) scattering problem and a vector (electromagnetic) scattering

problem at the same time. This is not true with plane wave incidence and the

attractive prosp ý of solving two problems with one function is not to be overlooked.

Lastly, with the general solution of a scattering problem for an arbitrary dipole

source (essentially finding the Green's functions for the particular scatterer) it is

possible by superposition to construct solutions for any source distribution and, by

passing to a limit, the plane wave case can also be derived. Of the various sources

only dipoles will be considered since more complicated sources can be represented

as a distribution of dipoles.
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Let (r, 6, 0) and (r1 , S0, Sl) denote the field and source points respectively

and R the distance between them (see Fig. 3). A scalar source at the point

rl, 0 1 ,o is then given by

1kR
e4=R

We note in passing that 0 can also represent an acoustic velocity potential.

(r 1, S 16 1 1 )

"r, 0, 0)

"/
0 0

FIGURE 3
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An electromagnetic source at the point r,, 01, 01 can be derived from ik in a

variety of ways:
ikR

a) In equation (2.13), let e= _._R and 1 = 0, or alternatively, -• = 0,
ikR J2

.2= R- In the first case the field components given by (2.13) are those of a
ikR

Hertzian electric dipole at (r 1, 61. 01) with Te = InthesecondcaseI e R •z=Jl" In thzeodc

the equations (2.13) define the field components of a Hertzian magnetic dipole at
MkR

(rI, I1 , Ai) with •M= e= W z =-•2•" Expressed in the notation of Stratton (1941)

Ue and Tm are electric and magnetic dipoles of moment p(1) = 4zli ande m z

In W= 4r? , respectively.

b) In similar fashion, the equations (2.14) can be used to define electromag-
ikR ikR

e enetic sources by taking either ,1 = e__R and 02=0 oro&1 .=0 and V2 = R

The equations (2.14) then represent the field componeats of a radial Hertzian elec-

tric dipole (first case) or a radial Hertzian magnetic dipole (second case). At first

sight it would appear that in order to treat these dipoles in the same manner as the

dipoles described in a) (which will be designated axial to distinguish them) it is

necessary to define the dipole moments as

p(1) = 4wcr and m(1) = 4wr. (2.15)

One would be hard put to give a physical interpretation to a dipole moment

which varied with field point. However it is a relatively simple matter to show that

if the constant vector r1 replaces the variable vector r in the definitions of dipole
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moment there is no change in the field quantities. That is,

ik e~~( 4k) (2.16)

and, of course, this remains true if one operates on both sides with a curl. To

verify (2.16), we first note that

r-r

R = B -. El which implies VR = -,

(V operates on field variables)

and also 1_r r = 0. With these facts in mind it is clear that

ikR k.R d ik. V1 / 11)
A(-r--l)•- =V -R-' r-1-rl)=A

e _kR Lr -_r,) (r-l j) = 0.

=R -R )--r = A

Hence (2.16) is an identity and the dipole moments can be defined as

p(1) = 4rcr1 and m(1) = 4r1

which are truly radial dipoles at (rI, 01, 01) though admittedly normalized in a pecu-

liar way.

Because of the convenience of the Debye potentials or radial Hertzlan vectors,

scattering problems with radial Hertzian dipole sources are often encountered in the

literature.

24



THE UNIVERSITY OF MICHIGAN
3648-2-T

In one special case, of course, the relation between radial and axial dipoles

is particularly simple. This occurs when the source is on the z-axis (e1 = 0) but not

at the origin. Since the rectangular coordinate sybtem employed here is oriented so

that the z-axis is co-linear with the axial Hertz vectors, we then have r 1 = rAi.

Consequently, the field components defined by (2.13) when

ik Vx2 + y + (z - r1 )2

"-[- -" e = e (2.17)
- z x=2+ y2 + (z - r02 z

are the same as those defined by (2.14) when

1kB
e

01 r R and 02 = O (2.18)

The factor 1/r normalizes the dipole moment to be 4ier 1, or in this case 41rclz.

(An analogous relation holds between axial and radial Hertz magnetic dipoles.)

Explicitly

H =x ye i -( E = -x(z-rl)e ikR 31k_ 3

= R x 1 R5)

H = Iwx~ ikR (_a__ ) E=1d1r) iR( A 1

\ R2R3/ yY z 1 Ie 3 _ 4-7 5 /

H 0= k]R A• + Ok2L2+y2-1 31k(z-r )2 2 + 3(z-r )2\

(2.19)
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where R = •x2+y
2 + (zrl)

2

In terms of spherical coordinates these become

Hr = 0 Er = e ikR(rI f- coseg)

HO = 0 Eo = e kR(-r sin Of + sin0g)

H=ixr sin 0eikB ( i ) E0 -0 (2.20)

where

k2r 311kr 3r

R3 R4 R5

21k k2rr1cosO-2 3lkrrI cos 0 3rrI cos 0

R2 R + R4 R5

When r1 = 0, the case invariably treated in standard texts (e.g. Stratton, 1941), it

is easily seen that r = R and the above components then reduce to

H = 0 E =-2coos e (ikr 1-
r r \r2 r3)

rr)H8=0 E=-sinoekrk+ -')

9 r 2 3
r r/

HS= -ksin ek L E 0. (2.21)
\r2

There is some difficulty with the radial dipole formulation when r1 - 0 due to

the presence of the factor rI in the definition of the dipole moment. The radial ele-
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tric dipole of moment 4r1 = 4ucr 1z (01 is still zero) has zero moment when

rI = 0 and therefore cannot radiate, i.e. the field components are all zero. If, on

the other hand, the dipole moment is normalized to be 4rez, then (see equation

2.18) 1 is apparently singular when r1 = 0 for all r. Of course, if the field com-

ponents are computed first, the limit r 1 -4 0 presents no difficulty, but in spite of

this it is more convenient to avoid the radial dipole formulation for sources at the

origin. In many important examples, indeed all the problems discussed in this re-

port, the source will not lie at the origin, it being more convenient to choose the

coordinate system so that the scattering surface rather than the source is simply

described, and the radial dipole formulation no longer presents a difficulty.

It is now possible to formulate simultaneously in terms of Debye potentials

both vector and scalar scattering problems involving a cone in the presence of ele-

mentary excitations. First define the ranges of field and source variables to be

*1>0 0 1 <9 <O2v

r >0 0'<O O8c0 0 ,<2r.

If a single valued function V1 of all six variables, twice-differentiable in

each except (possibly) at the boundary 8 = 8of can be found such that

(7 2 + 7k2)0 = 0 (2.22)
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m r - = 0 uniformly in ^, (2.23)

and

e =e =0, (2.24)
0=0

then

a) the velocity potential of the field scattered by a perfectly soft cone in the
ikR

presence of a source e is given by •Ik

b) the electromagnetic field scattered by a perfectly conducting cone in the

presence of a radial electric dipole (with moment 4wer 1) is given by equations (2.14)
ikR

with I = ?k1 + e' 2 0;

and c) the field components of b) in the particular case when 01 = 0 also repre-

sent the electromagnetic field scattered by a perfectly conducting cone in the pre-

sence of an axial electric dipole of moment p(1) = 4rcrlTz.

If a function a can be found which fulfills all of the conditions required of

0 except that the boundary condition (2. 24) is replaced by

MR =0 (2.25)
TO B _ + /2

0=0
0

then d) the velocity potential of the field scattered by a perfectly rigid cone in the
AR

Sof a source -- is given by
presenceR
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e) the electromagnetic field scattered by a perfectly conducting cone in the

presence of a radial magnetic dipole (with moment 41rr) is given by equations (2. 14)
ikR

s e
with 1PI =O, 2= 0, 2 +e

and f) the field components of e) in the particular case when 06 = 0 also repre-

sent the electromagnetic field scattered by a perfectly conducting cone in the pre-

sence of an axial magnetic dipole of moment 47 r
1 z*

A detailed derivation of the functions 01 and is carried out in the next

section for the cases when the source is on the axis of symmetry of the cone, so that

01= 0.

This section is brought to a close with a brief word on the important case of

plane wave incidence. The plane wave, either scalar or vector can be thought of as

a limiting case of a point source: namely as a point source removed to infinity with

all field quantities appropriately renormalized. For example, consider the scalar
ikRe 22

source - when 01 = 0. We then have R = r2+ r 1 - 2rr cos 8 , and for suffi-

ciently large values of r1

i kr1 - ikrcoso 0 ikr -ikz
e e e

R r 1  r

ikrl

Deleting the factor -_, I. e. renormalizing the source strength, now leaves only
-~ r1

e , which is a plane wave propagating in the direction of the negative z-axis.

-ikz -ikz
Unfortunately, however, letting q/1 = e and #2 = 0 (or P1 = 0, @2 = e- ) in
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the equations (2.14) will never produce a plane electromagnetic wave, and conse-

quently for plane wave incidence the scalar and vector problems must be treated

separately. Although it is possible to find two scalar functions which, through the

equations (2.14), produce a vector plane wave, these functions have no meaningful

A -kinterpretation in the scalar sense, since to produce the plane wave E = e-

H -= 1 -k using (2. 14), it is necessary that

-ikz -ikz
41 2xe2  and W2 = (2+ y2)

k2(x2 + y2) k (x+y

which exhibit a delta function behavior at all points on the z-axis.

The vector plane wave is the limiting case of a dipole when the dipole goes to

infinity in a direction normal to its moment. Thus the above example of a plane wave
ikR

propagating down the z-axis is the limit of an electric dipole -T = e I where
-e 2R x

the limit and renormalization are as in the scalar case. For this source, and indeed

for a transverse dipole in general, there is no meaningful scalar problem which can

be formulated simultaneously. Though Debye potentials may still be employed, they

have meaning only together with the equations (2.14) which define the field quantities,

whereas for radial dipoles the appropriate Debye potentials are meaningful in them-

selves.

The problem of finding the electric field scattered by a perfectly conducting

cone in the presence of a dipole of arbitrary location and orientation is one of deter-
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mining a single-valued, non-singular, twice-differentiable vector function Es such

that

(1) (72+k2)EB = 0

(2) V • E = 0

r r (2.26)

(4) (E ÷+ E)I = 0 =(E +E)Ir 0=0 =0=
0 0

where either

El = e "kR ]) (electric dipole of moment 4,ep)

or

E = i& LP V( -R (magnetic dipole of moment 4wm)

with

R =Ir-ri.

The most important cases are those where r, = 0 or r m = 0 (transverse

dipoles). When r1A 2 = 0 or r1A rM - 0 there is the alternate formulation in

terms of Debye potentials (equations (2. 22) through (2.25)), and any arbitrary mo-

ment can be decomposed into a transverse component and a radial component.

2.2 Particular Solution

Consider a point source of radiation located on the axis of a semi-infinite

right circular cone at a distance r 1 from the vertex. In terms of spherical polar

31



THE UNIVERSITY OF MICHIGAN

3648-2-T

coordinates (r, 0, 0) with origin at the vertex, the cone is defined by the equation

e= e > r/2

00
so that r - 00 is the half cone angle, and the source is assumed situated in the ex-

terior region.

Attention will be confined to the scalar problem (and appropriate vector prob-

lems as described in the previous section) in which the boundary condition at the sur-

face of the cone is either t 0 or - = 0 where 0 is the total field, and in the
88

neighborhood of the source ' has the prescribed behavior

ikRe
kR '

with R = Vr 2 + 2r - 2rr 1 cos 0 . The Dirichlet condition, kb = 0, is appropriate

1 1

to both an acoustically "soft" surface and an electromagnetically perfectly conducting

surface in the presence of an electric dipole (axial or radial) whilst the Neumann con-

dition (-0 = 0) corresponds to both a "hard" acoustic surface and a perfectly con-8d

ducting surface in the presence of a magnetic dipole (axial or radial). The task

which then confronts us is the determination of a solution t& of the scalar wave equa-

tion which is free of singularities in the region 0 < 0 < 0 except at the source but0

including the cone vertex, which satisfies the boundary condition on the cone surface,

and which has the appearance of an outgoing wave at infinity (see equations (2.22)

through (2.25)).
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The form of the solution is suggested by th8 representation of the source

function in cylindrical polar coordinates. From Stratton (1941), we have

ikR S1 (2n+l) Jn(kr. h n(kr ) Pn(U) (2.27)

n=O

where 1 = cos 9, j n(x) and h (X) are the spherical Bessel and Hankel functions of

the first kind defined in terms of the corresponding cylinder functions by the equation

Z(x) = 'rI Zn WIx)" (2.28)

r< stands for r when r<rl, but for r1 when r >rI. and conversely for r>. Fol-

lowing Carslaw (1914) the sum is now expressed as an integral over a contour C in

the complex v plane:

ikR (2v+I) j h(kr) (kr )P (-p)
e _1 V z' i > V di' (2.29)

e.kR 2 3sin vi

C

and because of the behavior of the integrand for large I v 1, the contour can be taken

as a parabolic path running from v = (1 +ix)o to v = (1- ix)a), where x is a real

positive number, and intersecting the real v axis between v = -1/2 and v = 0.

The above representation of the source function suggests that for the total

(incident plus scattered) field we write

1 (2v+l)j (kr)hP(kr>)f a)

S= 2 sin v " dv,

C
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where f uV) is a linear combination of P (u) and P (-W) chosen so as to satisfy the

various boundary conditions. Taking first the problem of the hard cone (-a, - 0 at
88

the surface) we observe that if

d
do P (-Io)

f(0) = P ('-P) - 0 P (0) (2.30)
Vd P(Wo)

the boundary conditi6n at 0 = 0 is satisfied automatically. In addition the solution0

is finite in 0 < 0 < 0 except at the source, where it has the desired infinity, satis-0

fies the scalar wave equation, and has the appearance of an outgoing wave as

r ---ý o. Inasmuch as all the conditions are now satisfied, the solution for the Neu-

mann problem is therefore

~~'22d dld

f cl~uo o

(2.31)

This solution may also be expressed as an infinite sum. To this end we note

that since

Pn 1)n Pn W

the bracketed terms in the integrand oe (2.31) are zero for integer Y, and conse-

quently the only singularities of the integrand are poles at the zeros of P- P (uj)
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As a function of Y, these are real and distinct (see Carslaw, 1914) and are non-

integral except for v = 0. This last is a zero because of the identity

Po() =0 1

and since y = 0 is also a zero of sinvi', the residue at this point requires special

consideration.

From the definition of the Legendre function, we have

P (p) = 2 F (-V, iV+l; 1; 12-± ) (2.32)

(see for example, Magnus and Oberhettinger, 1949) and hence for small v

V_ 2
Pu• +ilog 2 +0O(v2). (2.33)

The residue of the integrand in (2.31) at v = 0 is therefore

I Jo(kr) ho(kr>) .- 2 (2.34)

and if the contour is now closed in the right hand half plane, we have+

d p (-P
21 (2v1)j V(kr<)h( V (1->°) c 0 o P0

@2 =-O o ho(kr) e o sinwV Wd 2  y

0 (2.35)

+We remark in passing that Carslaw's formula corresponding to (2.35) is in error

by virtue of his failure to separate out the residue at v = 0, though his result cor-
responding to (2.37) is correct.
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where the summation is over all the zeros of--L P • ) for .>O.

The above expression can be further simplified by using the fact that for v

real

(1 - 2) jPV(A) A pv() - pt(_M) d PV(U = sin (
du clu 7(2.36)

d

(Carslaw, 1914). If v is a zero of -- P (uo), then
0

2 d2(I -p2o) P (uo T: = -- 2 sin ,
0 V 04 r0

which can be substituted into equation (2.35) to give

21 P V W

0= T-J Jo(kr<) h 0(kr>) + 21 Z (2v+l) j V(kr.)h V(kr>) -- ~) 2
0 ( 2)p(uo) P(o

(-Ao v o dvclu P0vuo

This can be written somewhat more compactly as

= 21 T (2&+l)i(kr)h(kr) 2 (2.37)v 2d2V(1- 4 2o) Po o (A P Wo

where the summation is over all the zeros of,-- P (o ) for v >-1/2. Since
0

P VU0 P-v-i( 0

all the zeros of the derivative are included In this summation.
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For the case in which the cone is soft rather than hard, the treatment is

analogous to that given above. Corresponding to (2.31) we have

•I=2 C(2 + l)J V(kr^h(kr>)sn L P V()P(°)p V "U Pvwpý)PY( )}- d

Sin VIp(M) dv

(2.38)

which can be written as

(2v+l)j (kr)h (kr>) P,(-Mo)

S= -is,/ ~jsin 'z d P (u) (2.39)v -P(po)
dv V 0

(cf equation 2.35), where the summation is over the zeros of PyVo) for v >-1/2.

Since v = 0 is not a zero, the difficulty which was found for the hard cone does not

now appear, and using equation (2.36) the above result can be expressed directly as

P($,)
PVW

01 -21 • (2v+l)j (krh(kr>) 2 d d
o •v•o d4 0 Po

0
(2.40)

(cf equation 2.37). We note the omission of a factor v + 1/2 in the equations cor-

responding to (2.39) and (2.40) in Carslaw (1910).

With all the above formulae computation of numerical results is laborious for

two reasons. In the first place it is difficult to obtain sufficiently precise values for

the zeros of the Legendre functions and their derivatives, and secondly the infinite

series converges very slowly under most circumstances of practical interest.
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Deferring until later a discussion of the first point, attention is now focussed on the

convergence properties.

That the series actually do converge can be seen by considering the behavior

of the elements of the summation for large Y. Taking first the radial functions we

have

j W) 1 I 2 x/2)/ +O(x/ 2 (2.41)

h(x) = ri , r 1({,+ (2.42)

,(x)O2x 2/vV+1
h (x/2)

2
valid for v>>x . Also

P( () 2ri= I sin +1/ 2 )8+ {} (2.43)

(see, for example, Carslaw, 1914), giving

dP "( 2 (v+ 1/2)cos v+1/2)0+ (2.44)
v~ in3

and

d2pV(u) 2 3 (v+l /2)tsin v+l/2)8+ I . (2.45)

Hence, in equation (2.37) the terms for which v is sufficiently large can be written

as
S(kr<v 1 sin ((v+ 1/2)9 + (4

-- >o sin2 ((v+ 1/2)0o+14}
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which tends to zero as v -4 co, and does so with a rapidity which increases as

rr>. decreases. A glance at equation (2.43) reveals that the zeros of P (uo) are

approximated by v -v, //Oo(m - 1/4) - 1/2 (m integer) wherever (2.43) obtains (for
dP (uo)

v, hence m, large). Similarly the zeros of V are approximated by
clA

0
i/6o(m+ 1/4) - 1/2, (m integer) when v (and m) are large. Substituting this last

value in (2.46) yields

1__l + m_.v

-i 1 (k<N 0  s2li0i

0 2>

(2.47)

which in absolute value can be shown to be less than -c kr>< / , where c

is independent of m and bounded, so that by the comparison test the series (2.37)
kr<

appears to converge absolutely when > < 1. A similar result also applies to the

sums in equations (2.35), (2.39) and (2.40). A completely rigorous proof of conver-

gence would also show that this convergence is unaltered when all higher order

terms in 1/v in the expressions for the Bessel and Legendre functions (2.41) -

(2.43) are included. Such a proof, to the best of the authors' knowledge, has never

been given.

Assuming that these higher order terms are truly negligible, a study of

(2.46) or (2. 47) indicates that the convergence is improved if the source (or the

receiver) is moved off to infinity, and since this case has considerable practical
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Interest it will be considered next. To this end, let us assume that in equation

(2.37) the sum can be truncated at some value v = vl say. For sufficiently large

kr> the spherical Hankel function can then be replaced by its asymptotic expansion

for large argument, viz

i(krh-L v 2
h kr) "IV 1- (2.48)kr>>r{"

and if only the first term is employed, the expression for "2 becomes

ikr > i" p (a)

P2 = 2 ekr 5 e-2 (2v+l)jV(kr< 2> L(-j 2) d
(- 0 )P ( 0 dvcI- Li 0A

o (2.49)

valid for kr>>> v (Vl + 1). Providing that the truncation of the original series can be

justified, equation (2.49) gives the solution for either a receiver at a large distance

from the vertex or the point source at a large distance. For the limiting case of the

source at infinity (plane wave incidence) it is necessary to re-normalize 0 2 by mul-
-ikr>

tiplying through by kr>e before taking the limit kr>--4 oD. This is equivalent

to deleting the factor (kr>)-1 e-ikr> in (2.49).

To obtain an estimate for v1 it is sufficient to apply to the sum in (2.49) the

same analysis used in regard to equation (2.37). For vL sufficiently large that the

Bessel and Legendre functions can be replaced by their approximations for large

order (equations 2.41 through 2.45), the corresponding term in (2.49) then becomes
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-ii, (k-.

r 2 e2sin r(v + 3/2)

which can be written as

jr+3 k~r v

e sine /ý 3 ) (2.50)Vo

0

by using Stirling's formula for the gamma function. This tends to zero rapidly as

v -- o and to judge from its form it would appear that a sufficient criterion on v

is
v1 >> kr< . (2.51)

Accordingly, the Introduction of the asymptotic expansion for h v(kr>) is justified if

kr> >> (kr2, (2.52)

and in the limiting case of plane wave excitation the total field is (from equation

2.49)

02 = 2 Z e 2 (2v+1)j (kr) . (2.53)
2 2i 2V (1_-1 2 )P v o) d___ u_0 v uo

i/o

where v is such that = 0. The corresponding plane wave result for the

soft cone (equation 2.40) is

-i;W (2v+l)j (kr)P (U)01=-"-2 Z e 2•

v (1_j2) dPvu) dPv(uo) (2.54)

o dv ' u°
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where v is such that P Oe) = 0.

It is easily demonstrated (e. g. Siegel and Alperin, 1952) that when v is such
dP

that - (u) = 0, then
0

oM2v'l d 2U =lu )12[p

2v+1 clu 0 dv - v ( (z'+ 1) uf2c (.5
and when v is such that P~o =( 0 O, then

(1-,u, P u)dP(
o 1 2

(2. 56)

If these expressions are used in (2. 53) and (2. 54) the total field for both boundary

conditions for plane wave excitation can be expressed as

= 2 _ e - J(kr)P (2.57)

0

where • = (soft cone) with the summation over v such that P(p) W 0 and
dP (po) /

S= 02 (hard cone) when dP = 0. Note that a uniform expression can also be
0

Dbtained for the point source solutions (equations 2.37 and 2.40), namely

iv (kr)h (kr>)P ()
=21 2 (2.5)
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where the same convention is observed; namely 0 is the solution of the Dirichlet

problem when the v's are zeros of Pv(uo) and 0' the solution of the Neumann pro-

dP (p
blem when the Y's are the zeros of d' 0

0
The solution required in most calculations associated with the cross section

is given by (2. 57) but unfortunately its form is not convenient. In the first place,

the sum represents the total field, whereas the incident and scattered fields are

individually necessary in order to compute a cross section, and the separation of

(2. 57) is a not too easy task. In addition, the definition of the cross section, viz

= lir 4rr
2  a/s/i12

implies that the receiver is placed at such a distance from the body that the scat-

tered field has acquired the characteristics of a spherical waves and avoiding the

question of whether this definition is applicable when the body is infinite in the trans-

verse direction (Brysk, 1960) the consideration of equation (2. 57) for large values

of kr is fraught with difficulties.

If the Bessel function j V(kr) in (2. 53) and (2. 54) is replaced by the first term

of its asymptotic expansion for large kr the resulting series diverge. However, in

the case of back scattering, Schensted (1953) and Siegel et al (1953a, 1955b) use

special summation methods to obtain expressions for the cross section. The diffi-

culty inherent in treating divergent series is avoided by Felsen (1955) who replaces

the Bessel function not by an asymptotic form but by its Sommerfeld integral repre-
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sentation, and obtains by steepest descents analysis an approximate evaluation of

both the field and the cross section for large and small angle cones. The results of

these analyses are presented in Section 3.

This section is brought to a close with a brief discussion of the computational

problem of finding precise values for the zeros of the Legendre functions and their

d
first derivatives (those values of v for which P (cos 9) or -! P (cos 9) vanish for

V dO v

fixed values of 0). In addition, the zeros of LP(cos 0) are of interest in the vec-

tor problem (see section 3.1. 3).

For large values of v, these zeros can be simply approximated, as was men-

tioned earlier in the discussion of convergence. However, the dominant contribution

to the series (2.57) and (2. 58) (or any of the alternate forms given) comes from the

early terms and consequently the small zeros (small values of v for which

pm(cos 9) = 0) are quite important in any computation of the field or the cross sec-
c s

tion.

Obtaining accurate values for these small zeros and increasing the accuracy

of the large zero approximation are not trivial problems. Hobson (1931) summarizes

the work of Macdonald (1900b) and Pal (1918, 1919) who find approximations to the

zeros as a function of argument. These expressions were employed by Carrus and

Treuenfels (1951) who tabulated the first 50 zeros of P (cos 0) every 5 forV

900 < 0< 1750 and the first 50 zeros of d P1 (coo 0) every 5O for 90 < 0 < 1300.
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Also tabulated were the integrals S [P u)] 2*u for these v's. Errors in these

tables were noted by Siegel et al (1951). For the special value 0 = 1650 the first0

twenty zeros and normalizing integrals were recomputed by Siegel et al (1952,

1953b). These last were again recomputed with even more accuracy by the Institute

of Numerical Analysis (see Siegel et al, 1953a).

Even if the zeros were tabulated, however, the calculation of the field or

cross section would still present a formidable computational problem. Some of the

dif'ficulties inherent in the representation as infinite sums over appropriate zeros

are avoided in the integral representations. Appropriate integral expressions, if

available, should be used in any extensive computational program [see Section 3

and Felsen (1953, 1955, 1957a, b, d, 1958)]. This is especially true in the light of

present day high speed computing techniques, as is borne out by the work of Gory-

anov (1961) (see section 3. 3).
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III

SUMMARY OF SEMI-INFINITE CONE FORMULAE

This section presents a systematic listing of existing expressions for the scat-

tering properties of semi-infinite cones with either plane wave or point source exci-

tation. Various approximations are given, together with the restrictions on the para-

meters under which the approximations are valid. All formulas have been trans-

formed to the notation employed throughout this report. Thus 0 1 represents a scalar

source (either point source or plane wave), ip1 represents the field scattered by a

soft cone (Dirichlet boundary condition) and 'r= q1i+VP1 is the total field. qPs rep-

resents the field scattered by a hard cone (Neumann boundary condition) and

P2 = rpi+2 a In general these ' will be functions of six variables, viz. 3 field coor-

dinates and 3 source coordinates. When 'P is a plane wave, the number is reduced to

five and in the important case when the plane wave is incident along the axis of sym-

metry, the field is a function only of the three field coordinates.

When the scattp,'ed field is observed far from the vertex, it is convenient to
11cr

introduce the scattering amplitude S whereP ^- e- SW( ) andJ=1 or2. For
j j kr j

general plane wave incidence the scattering amplitude is also a function of 8 1 1

the angles specifying the direction of incidence. The scalar scattering cross sec-

tions will be denoted by a j where
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a -- r n- 41r 2 1 s/0i 2

j r--,co,
2 2

In general a. will be a function of four angular variables, but most of the resultsJ

available are for the case 01 = 0 (incidence along the z-axis) so that the number is

reduced to two. The back scattered far field for plane wave incidence along the z-

axis is an oft-computed quantity and will be denoted by 0(0) and aj(O). The electro-

magnetic results will all be given in terms of the electric field E, and the same

superscript convention will be observed as described above. Thus, Ei is the in-

cident field, E__ the scattered field, and S the far zone scattering amplitude (now a

vector). a (without subscript) will denote cross section, defined as

a lim 41r 21 L!/ 2l

X2 2

and a(0) is the back scattered cross section for incidence along the z-axis.

In the presentation of formulae, the natural division into vector and scalar

problems, with the latter further split Into Dirichlet and Neumann boundary con-

ditions, will be observed. With each formula will appear the appropriate conditions

for applicability.
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3. 1 Dirichlet Boundary Condition. Alkrrl

For an arbitrarily located scalar source ki _Ell in the presence of a

soft (0 = 0) semi-infinite cone of half angle v -00 (equivalent to a radial elec-

tric dipole of moment k and a perfectly conducting cone) the total field is

given by Felsen (1957a, b) as

L ODInCo s c0 (2 (v +m+l)j, (kr<)h (kr>)27 cmCOSmn(•_4)Fk f (2p +1) <

m =o ) P (V -m+l)sin(v -m) "

P\cos6 )
-V•(C [ m os > )P-m (-cosOo)-pml (-cosO> )Pm (cos oa•

p-m (cos 9 I) (3. 1)

where
W = /lr/Px Wh W VrfxH (1) Wx,

J =V / Vu+ V2( ) hVx='"" u+ 1/2'

co = 1, %= 2 for m= 1, 2,3,...+

r<=rfor r<r1 , r>=r forr> r1 ,

=r for r <r =r 1 forr >r

0<=0 for 8 <81 0>= 0 for 0 > 01

= 01 for0 1 <6 =01 for01> 0

and the contour c is shown in Fig. 4.

+These definitions of cm and the spherical Bessel functions agree with those in

Magnus and Oberhettinger (1949) but differ from those in Felsen (1957b).
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c

v -plane

FIGURE 4

When the source is on the axis of symmetry (01= 0) equation (3. 1) simplifies

considerably, and only one of the many alternative forms for the resulting expres-

sion is given here. Alternate expressions can be found in Section II of this report,

Felsen (1955), Carslaw (1910) and Macdonald (1902), though care is necessary to

make sure that the source normalization and time dependence are consistent before

comparisons are drawn. An additional problem is present in the older references

(Carslaw and Macdonald) because their notation is usually different from that em-

ployed by modern writers; e.g. Macdonald's (a, (,V), and (x, y, z) are the components
- i H (

of 4sH and LT E respectively, and Carslaw's K (ikr) is _ e H(V)(kr).

ikR 2 2 .
The total field for a source kR withR r +r -2r r 1 0os 6 ti
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2,:j (kr,<)h (icr ) cs (3.2)

where mo cos 00 and the summation is over the positive zeros of PV (14o), that is,

over the set of v such that v > -1/2 and P (90 ) = 0.

A symmetric distribution of electric dipoles about the z-axis is discussed by

Macdonald (1902) and a simply varying circular source is treated by Felsen (1959).

When a plane wave is incident from an arbitrary direction the total far field

is given by Felsen (1957b) as

=-krýtnO sin 01 cos(o -81)+cOsO cosOli 1 e ikr 2
2kr(cosG +cos6I )log- T

(3.3)

subject to the restriction kr >>1, 0+0 <20-1r, and o - (thin cone).

i -=kz
When a plane wave is incident along the axis of symmetry, q1 = e , the

total field is given in Section II [also Felsen (19551) as

01 =2 e (kr)P(cosO) (3.4).f [PV (MA) 2 diA
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The backscattered far field for plane wave incidence along the z-axis is given approxi-

mately by Felsen (1953, 1955) as

ikz
0s 

-ie k
(0)= (3.5)

2
4kz log . -0

when » >> kz>> 1,

20 2) 32•'(0) = (- )'x _ [~ _L_)}ek~~

S.2 ) exp e (3.6)

2(4zkz

when GO0", 2, kz >> 1 andtiv/'cos 001 >> 1, and

2 2r 1

kz-i
-e n e e dy (3.8)

'(1 -i)•

when 80-v k" and b/R>> 1, where > = an doseJ.

Note that equation (3.7) can be rewritten in terms of 9 as
ilcz

07(0) o» 1>>. (3.9)
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The coefficients of -eikz in equations (3. 8) and (3. 9) are plotted in Fig. 5 where it is
+

seen that the two coincide for ov 4 ; hence (3. 8) must be used for 9 < 4 while the

simpler expression (3. 9) suffices for 9 > 4 (Felsen, 1958).

Corresponding to (3. 5) and (3. 7) the following expressions for the back scat-

tering cross section obtain:

/2

a(0)= 2 (3.10)
16 ,r (log 1- 0)

when 00 ,v v, and

= ).2 (3.11)alO= 16,(o_- 'r

when o - .
0 2

The cross sections given in (3.10) and (3. 11) are plotted in Fig. 6 as a function of 00.

3.2 The Neumann Boundary Condition. ikjr-r~j
e

For an arbitrarily located scalar source in the presence of a

hard(.a-- = O) semi-infinite cone of half-angle r-' 0 (equivalent to a radial

magnetic dipole of moment k rE and a perfectly conducting cone) the total field is

given by Carslaw (1914) [see also Felsen, 195Th] as

)C (2v+1)J (kr )h (kr )P )m(o6O)p -Nols

=27 
dE-CcosM(0 -_<

m=o V m-

(3.12)

+The amplitude curves coincide at g -v 2 but the phases differ.

52



T1V EtsVTY OF MICUIGAN

3648-2-T
"co

_t( 2 "+ / 4) e _Y2 dy

1. I-2 j4 ge e1-0 y

.BI e -o(see 
equatio u 3. 8)

.8 

80

.6 
6

6 
,50e

IB i

•. 4 

4 0 °

.4 
1• (see equation 3.9)

.3 

20o

.2 

200

\\ •0°

1.5 2.0 2.5 3.0 3.51.

5 GUR 5: X'R 'FI]ELD COEFFICIENITS FOR THICK CONES

53



THE UNIVERSITY OF MICHIGAN
3648-2-T

101

10

(see equation 3.1 )

ý2

10-1

(see equati ~n 3. 10) •

10-2

100o 1100 120 00 1300 140 1500o 1600

FIGURE 6: NOSE-ON BACK SCATTERING CROSS SECTION OF A
SOFT CONE
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where the notation is the same as defined under equation (3. 1) except that the sum-
dp-m

I/
matlon is over the non-negative zeros of - (cos 0 ). That is, the set of vIs for

dOo6

each m consists of those v for which v > - 1/2 and . (cos 0 )=O. Note that
d0o 0

when m=O, v =0 is an element of the set.

When the source is on the axis of symmetry (0 =0) the field expression is

given more simply (see Section ID) as

02=21 • j V (kr<)h (kr >)P V° 0os0) (3.13)

P f [32 dM

dP
where the v 'are now such that v > -1/2, -V (cos 0o)=0. Alternate expressions can

d 0

be found in Carslaw (1914) and Felsen (1955, 1957a,b).

When a plane wave is incident from an arbitrary direction so that

= -ikr[inO sinOlcos(o -01)+coso cos01le•

the scattered field is given by Felsen (1957b) for thin cones as

22

(3.14)
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where

I dx 2 - e ()(kr)(1/4 +x 2)Px q (cosO)Px (coos01cosh 2rx ix 2

111
I=fdxjl x H x-r)P (Cos 6)P /(o2 ix x

and

0o v - , 0+0 <20o-.
o 1 0

In the far zone. equation (3. 14) can be simplifed (Felsen 1957b) to read

"a i(i-° ) 2ekr

2(cos9+cos 01)3 kr (3.15)

for kr >> 1, 60iw, and 0+81 < 200-r. Higher order approximations are discussed

by Felsen (1957d).

i -lkzWhen a plane wave is incident along the axis of symmetry, 0i= e the total

field is given in Section II (see also Siegel and Alperin, 1952 and Felsen, 1955) as

~'2 2Z' -i11/2 J. (kr)PV (cosO) (3.16)
2= 2 

4" eV 
(;A.265
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dP 1j.o)

where v is such that v > -1/2 and =/ = 0.

The back scattered far field for plane wave incidence along the z-axis is

given approximately by Felsen (1953, 1955, 1958) as

s 2u-1 ' C~ ikzk_..

8 -= e (3.17)
02 .2L ~2'0)

1

when --- >> kz>> 1;
0

2
(O) 1°exp(3 i2/40°) . 1+ -2/eo ez

-s01 0n•/ 0) +1 e e. (3.18)

2(4)in (72/200) e j kz

ikz
I e

4(0 o_/2)2 kz

when 0oN v/2, kz>> 1 and I Jkz cos 001 >> 1; and

t- -ir/4-2i g2 OD1 2i y

(0)eikz sin0 '2F2 e e-y 2 dy (3.19)2( f(, 1-)9

when 0ou r/2, kz >> 1, where 9 =ji'z Icos 0oJ . Note that (3. 18) can be rewritten

in terms of 9 as

ieikz2(0)'v g , >> 1 (3.20)
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and that (3.19) and (3.20) differ only in sign from the corresponding soft cone re-

sults (3. 8 and 3. 9) plotted in Fig. 5.

Corresponding to (3.17) and (3.18), the following expressions for the back

scattering cross section obtain:

X2(7_9o)4

q2(0= 641 (3.21)

when 8o0?, and

a 2(0)= l(3.22)
i6i(10oi/2)4

when 600 v/2.

A more general expression for the back scattering cross section is given by

Schensted (1953) and Siegel et aI-(1953a, 1955b) as

2(0)= e V 1 (3.23)

P•o 0o

dP
where the summation is over the non-negative zeros of -du' (cos 9 ), but only a finite

do
0

number of terms must be included since the infinite series diverges. (See remarks

following equation 3. 32). Despite this drawback, the expression was used

(Schensted, 1953; Siegel et al 1953a, 1955b) to yield the next order in the large and

small cone angle approximations (3.21) and (3.22). These are

58



THE UNIVERSITY OF MICHIGAN
3648-2-T

a (0)= - (i+cos 0o) 2 l eog 2 -IX1+Cos 19.)] (3.24)

for 0,",ir, and

S(O0)= (3.25)
2 161' cos40

for 8.• /2.
0

The cross sections given in (3.24) and (3.25), as well as the first order approxi-

mations (3.21) and (3.22), are plotted in Fig. 7 as functions of 0o.

3. 3 Vector Boundary Condition.

The field of a transverse electric dipole of moment 4z cpt and arbitrary

location is given by

Ei= A VA r~r(3.26)

where pP(6  Ol+P1 1 . When this source is in the presence of a perfectly con-

ducting semi-infinite cone, Felsen (1957b) gives the total field as

p a2s s 22 P iPB1 -P____ as
_E=• r'• aGlar1  rlslnO---1  8• 1 8r1

A r - p 1 "2 7 (3.27)
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FIGURE 7: NOSE-ON BACK SCATTERING CROSS SECTION OF A HARD CONE

60



THE UNIVERSITY OF MICHIGAN
3648 -2 -T

where
krr o (2v÷+1)4 (kr<)h (ki)/'&+rm+)P-m(cos )
2I-'• coo m(O_• d0

m-on v (v +1 /'(v -m+l)sin(y -mrWp -m(co 00)
c

s2  P m(cos 0)P-m (-Cos 0o)P r-mr(-coo a)p -re(cosn

krr1 OD• (2v +I)i, (k2hv (kr • 0mlp -m (coo 8<)

2 =O +l(v +1)"(, -m+l)sin(v -mr- P (Cos 9

0
(-Co 19);8-•- P (cos> o 0 V0 1 0]

(3.28)

and the contour c encloses all positive zeros of the denominators of the integrands

(but not v = 0) as shown in Fig. 8.

v -plane

FIGURE 8
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The notation is that defined under equation (3. 1). Arbitrarily-oriented elec-

tric dipoles may always be decomposed into transverse and radial components, so

that equation (3. 27) together with (3. 1) is sufficient to describe the field exterior to

a perfectly conducting cone in the presence of an electric dipole, regardless of Its

location or orientation. An alternative representation, in terms of the tensor

Green's function, is contained in Felsen (1957a), which also provides a comparable

expression for an arbitrary magnetic dipole source.

When i A -ikr(sin esin 01 cos(O -0 1 ) + cos 0 cos 01)

-Ei= e

the scattered far field Is given by Felsen (1957b) as

2 20 s2 01 2 2
seikr I se sec sin ++ sin 2

e' ,-(00( 0 ec + "

2 28 2 29. . .. j ( 2)

2okr2 Cos0+cos 0 1  2ocos 2 )Cos 2 (Cos.+ cos

ndrters ricton

2 29 211ý
1kr -0 2 sinsinO sec 20+seo -

Noe that 1iF2x

ikr 2/ 0+ cos0-p c + o02)(cos6+cosO 1) L o o 1

sin2B+sin2 01  +~n f (3. 29
1 ~ 2

2cos2 tcos2 A-cosg+cosojT (coso+cosB) 3J

under the restrictions

Note that Pwhen =i/
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In thc particular case of back scattering (9 =81 , 0 =0i) the above expressions

for the field components reduce to

ei=l e-ikr

and ik -
Ean tk o1  ) 3+cos 8 (3.30)

E;= r (ý 4cos3 9

When a plane wave is Incident along the axis of symmetry, that is,
IA -ikz

Ei=I e (3.31)

the scattered far field is given by Hansen and Schiff (1948) (see also Mentzer, 1955)
r e • ;p (cose) e P(coo 0)

iekr ,
ainV 21 1 dA

E--os Z sin0fc"A) [~JdP 5; 1P~( d

L 0 0

a ielkr Fn e ( ii3cos 0) e (cose)

E -- Irsino -0PI - V

kr 1 2: 1L. 1Ir A2i3 Va --o 1,. JA2 diA

(3.32)

where v is such that P1, (so=0, va >4/2, v is such that i- ±, v > -/2,
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and kr >> 1.

No upper limit is given for the sums. This omission stems from the fact

that the vY and vo are infinite sets and if all the terms are included, the sums

diverge. Siegel et al (1953a) estimate that when 0 =0 (back scattering) approximately

[41--00 terms are of the form shown but the remaining terms (infinite in number)

are negligible. This complication is avoided in the integral representation of the

scattered field given by Felsen (195T7, d). Goryanov (1961) explicitly gives the in-

tegral representations corresponding to (3. 32) as

5 ie ikr OD 
OD

cos a- v sinh(vw)F((&)dv+-, I ysinh(v )F2(v)dv

cot2 0 -
2+

2 co I (3.33)

iE0 sin - - h F(sinh(v,)F 2(v)dv
cot2 '0 1

21r
2 cos 2 !E

where Piv _W2 (-cosOo)PJV.L V2 (cosi)

Pf, _ (coseo)coshv w(v 2+ V4
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a_ P1 ( -coso)P•_ _ (cose)

2ly)=a p 1 I (coso )cosh(vuX + 4 1/4)

No liv/ 0

and
kr>> 1.

Equation (3. 33) is valid only for 0 < 2o8-, that is for field points exterior

to the cone formed by the specularly reflected rays. For this range Goryanov

(1961) reports extensive calculations of the bracketed terms in (3. 33). Although his

numerical results are presented only qualitatively, he concludes that the difference

between the true far field and that predicted by physical optics (see below) increases

uniformly with angle away from the back scattered direction and that the difference

never exceeds 10 percent of the value computed with (3.33) for 0 < 20o0- /90.

The far field components for the plane wave (3. 31) incident along the axis

of symmetry, as computed by physical optics (see section IV) are given by

Goryanov in the form
6 i ik teiekr

ie-kr cos 0L, E;= -- sino L

where 4cosI sin2  00cos g o (3.34)

L 4cos /2[cos(eo0-/2)cos(8o+ e/2jI•- 3

The back scattered far field for this same incident field (3.31) has been

approximated by Felsen (1953,1955) as follows:
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ES(0,0,z)= -14ee-kzsin3o -2 2-9e-i(2g2+/4 ey dy)3.35)
-(l-i)•

where

and o'- r/2, kz >>I, <4 ;

a is iekz
_0.z)= - ix 4kz(o0-r/2)2  (3.36)

for 00Nv/2, kz>> 1, g > 4,

and -E(0O0,z)=- (-2 (3.37)

1
when >> kr >> 1.

0

Note that the magnitudes of EB given in (3. 35) and (3. 36) are plotted in Fig. 5.

Although all the field expressions given above con be used to calculate

radar cross sections, the calculations which have been carried out explicitly in-

variably deal with plane wave incidence along the axis of symmetry. The physical

optics result is then independent of 0 and is given by Siegel et al (1955a) as

.2 tan4 0 2(l+cos2Go)
a (8)= 16, (l+ooseXcose+cos28o)3  (3.38)
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When 0 = 0 this reduces to the widely-quoted back scattering physical optics cross

section, given first by Spencer (1951) as

a (0)= _j. tan4(r-o (3.39)l6f

The small cone angle approximation of Felsen (1955) (equation 3.37) yields

substantially the same cross section:

X2 4W 0=•-~-o (3.40)

for 1for >> kr >> 1.
7-6 0

The large cone angle approximation (3.36) also gives essentially the same

result as physical optics, namely

- (0-2) (3.41)

for o '1 r/2, kr >> 1, (IZ coseo> ,

The back scattering cross section obtained from the field expressions

(3. 32) is given by Hansen and Schiff (1948) (see also Siegel et al, 1953a, 1955b;

and Mentzer, 1955) as
2

U()= . ,•(va e (v/+l)e

4w,= -Z -1 Z 1 [:()'(.2

/1o [ý 2o [

0 VC A V

i+Hanen and lhif(1948) quote an earlier version of Spencer's work, now unavailable.
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where Y.and vp are the zeros of ••(oo) and - PI (.o) respectively and the

same convergence difficulties mentioned under (3.32) are still present. Despite

these difficulties the expression was successfully employed by Schensted (1953)

(see also Siegel et al, 1953a, 1955b; and Felsen, 1955) to yield second order cor-

rections to equations (3.40) and (3.41). These are

2
a (0)= >.4 (1-2cos 26o) (3.43)16f cos 400

for 0 ir /2, and

a(0)= (1+coso ) +3(1+cosQo (3.44)

for 0 7r .
0

The cross sections given by equations (3. 39), (3. 40), (3. 41), (3. 43) and

(3. 44) are plotted in Fig. 9 as functions of 00.
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I MGURE 9: NOSE-ON BACK SCATTERING CROSS SECTION OF A PERFECTLY
CONDUCTING CONE
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IV

APPROXIMATE RESULTS FOR A FINITE CONE

Even for the semi-infinite cone the complexity of the exact solution Is such

that detailed computations are extremely difficult, and some approximation is al-

most essential if the physical content of the solution is to be apparent. For the

finite cone the situation is still worse. The only exact solution available is for a

spherically capped cone (Northover, 1962; Rogers et al, 1962) and the results are

not yet amenable to computation. It is therefore appropriate to investigate the ex-

tent to which approximate techniques are applicable to this type of body.

In this section we shall be concerned exclusively with the back scattering

cross section for plane wave incidence on a circular cone with any of several dif-

ferent types of terminations. The low frequency behavior is discussed in Section

4.1 and in the next section the physical optics method is used to derive the scattered

field at high frequencies. The intermediate range of frequencies is again the diffi-

cult one, but in Section 4.3 some of the methods for extending the high frequency

results into this range are presented.

4.1 Low Frequency Scattering

Consider a plane electromagnetic wave incident upon a body all of whose

dimensions are finite. At sufficiently low frequencies, the complex amplitude of the

scattered electric field in the far zone can be expanded in a series of increasing

positive powers of k, where k is the wave number. If this amplitude is denoted
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by §, and is defined as the coefficient of e kr/kr where (r, 0, 0) are spherical polar

coordinates referred to an origin in a neighborhood of the body, then

CD

S = k3 Z knf (4.1)
n=0 _

where the In are vector functions of the angular variables 0 and 9, the body para-

meters and the characteristics of the incident field, but are independent of k. Since

S is a dimensionless function, it is clear that each power of k must have associated

with it a like power of some body dimension.L , and for sufficiently small values of

kL the series in (4. ) is convergent. The leading term corresponds to Rayleigh

scattering and when substituted into the formula for the cross section (see introduc-

tion to Section 3), we have

a= 4vk4 If 2  (4.2)

which depends on the wavelength through the inverse fourth power. This is the well

known Rayleigh law and holds for all angles of scattering including forward. For

practical purposes, however, the case of back scattering is of most interest and

attention will be confined to this for the remainder of the section.

The simplest body is the sphere and for this it is a straightforward matter

to determine as many of the f as desired by appropriate expansion of the Mie"-n

series (Goodrich et al, 1961). In particular, the leading coefficient f is made up--O

of contributions from an electric and a magnetic dipole with relative magnitudes 1
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and 1/2 respectively, giving a net contribution 3a 2/2 where a is the radius of the

sphere. Hence

a 9 k4a 6 (4.3)

which can be written as

81 kY (4.4)
16v

where V is the volume, and we remark that to this order in k any material of non-

zero conductivity appears perfectly conducting.

Since exact results (such as the Mie series) are known for very few bodies it

is fortunate that the f can be obtained in an alternative manner by solving certain"-n

scalar problems in potential theory. The technique is described in Senior and Dar-

ling (1963) and has been applied to the spherically capped cone by Darling (1960),

leading to an expression for f in terms of infinite matrices. The method is for---o

mally applicable to any body which is the intersection of a finite number of regions

within each of which the electrostatic Green's function is known, and can therefore

be used in the treatment of cones with other types of termination.

For general bodies of revolution with on-axis excitation an approximate

method for the determination of I f01, and hence of a, has been proposed by Siegel

(1959). The theory has its origin in the fact that as regards f0, the body appears

only as a singularity to the wave, and the structure of the body is in the nature of a

second order correction. Since the return is also Insensitive to changes in polari-

zation, f can be a function only of the geometric properties of the shape, and the
o
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obvious first choice for a function of dimension L3 is to take it proportional to the

volume. Accordingly, we write

a = C1k4(VF)2o (4.5)

where C1 is a pure number and F is a dimensionless correction factor that takes

into account the approximate dependence of the cross section on the shape. From a

study of the exact expression for If for a spheroid of semi-major and semi-minor

axes a and b respectively, Seigel deduced an expression for F of the form

F = 1I+ 1 e -y (4.6)

Ty

where y = b/a, and with C1 = 4/v the resulting formula for a is in agreement with

the exact spheroid answer (Rayleigh, 1897) to within a few percent for all elliptici-

ties. For the particular case of the sphere, y = 1 and equations (4.5) and (4.6) then

imply

a = 1.5889kY

compared with the correct result (equation 4.4)

a = 1. 6114 kY.

If it is now assumed that (4.5) and (4.6) are a valid approximation for all

bodies of revolution under symmetrical excitation with y taken as a measure of the

elongation (the ratio of a characteristic dimension along the axis to one in the per-

pendicular direction), the formula can be used to derive the Rayleigh scattering

cross section of a finite cone. Inasmuch as the nature of the termination is unlikely
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to be important to this order of approximation+ it is sufficient to confine attention to

a right circular cone of altitude h and base radius a. The volume is then ra2h/3,

and from the definition of y it would seem natural to choose y = h/2a. A better

approximation, however, is to require that the cross section approach that of a disc

as h-4 0, from which we have y = h/4a (Siegel, 1959). The cross section of the

cone in the low frequency limit is therefore

=4 w 4a 4h2 f1 4ae -h/}

=+ (4.7)

The above formula is in good agreement with experiment (Brysk et al, 1959),

though care is necessary to ensure that the frequency is low enough to justify its use.

Since the cross section is determined by the volume and the maximum dimensions,

the upper extremity of the Rayleigh region for most right circular cones is dictated

by the slant length and not the base diameter even at nose-on incidence, which im-

plies that for a cone of fixed diameter the Rayleigh region recedes with decreasing

cone angle. In order to use equation (4.7) we therefore need

k «1+r2 <<

and this is the reason the experimental data of Keys and Primich (1959a) failed to

display the anticipated wavelength dependence. We also observe that equations (4.5)

and (4.6) are the same whether we view the object from the front or the rear, and

+Except for the extent to which the volume is then changed; but see Siegel (1963).
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consequently for a cone In the Rayleigh region the nose-on and base-on cross sec-

tions should be identical. This was first pointed out by Siegel et al (1959) and has

since been verified experimentally.

So far we have considered only electromagnetic scattering but a few words

are necessary about the corresponding scalar problems associated with hard and

soft bodies. The hard body (Neumann boundary condition at the surface) is the one

of interest in acoustics and for this the low frequency expansion is similar to that

shown in equation (4.1) except that the coefficients f are now scalar functions.
n

Only a single dipole contributes to fo, however, and the exact Rayleigh cross sec-

tion for a hard sphere is

25 k4V2(4.8)
16v

which is smaller that the electromagnetic result by a factor 81/25. Siegel's approxi

mate method leads to a value C1 = 1/y (a single dipole effect rather than two equal

in-phase contributions) so that for a hard cone the cross section given in (4.7) must

be reduced by a factor 4. For a soft body, on the other hand, the expansion for 'uhe

far field amplitude S is quite different. The leading term is proportional to k with

a coefficient which is simply the electrostatic capacity of the body (Senior and Dar-

ling, 1963), and the entire scattering behavior now differs accordingly.

4.2 High Frequency Scattering

At high frequencies the scattering behavior is more intimately related to the

geometrical properties of the body, and if the wavelength is small in comparison
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with all the major dimensions, an accurate approximation to the scattering cross

section can be obtained by the method of physical optics. In many cases the method

gives good results even when there are singularities on the surface, such as edges

and points (as, for example, the vertex of the cone), and we shall begin by using it

to calculate the back scattering cross section for a plane wave (E = e-ikzt ) atx

nose-on incidence on a cone with various types of termination.

The method is based on an approximation to the field distribution induced on

the surface of the object. On the illuminated side of the surface each element is

scsumed to possess the field it would have possessed had it been part of an infinite

tangent plane, whereas on the shadowed portion the field is taken to be zero. This

leads to a current distribution which is zero in the shadow and twice the tangential

component of the incident magnetic field in the lit region, and the calculation of the

scattered field is now reduced to quadratures.

The general expression for the scattered field under this approximation is

given in Crispin et al (1959). This simplifies considerably for the case of back scat-

tering from a body of revolution at nose-on incidence. If such a surface is defined

by the equation

z =g(p) . =p = ty

then the scattered electric vector in the far field can be written as
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E E = k (iok b e-21kg dp) (4.9)

- xr

where the integration is carried out over the illuminated portion of the body (for a

smooth convex body a = 0, b = pshadow). The bracketed quantity in (4. 9) is simply

the far field amplitude and if this is denoted by S then

4,= 2 e-2 pdp (4.10)
a

in terms of which the cross section is given by

a S2
- 811 4.11)

For a flat-backed cone of height h and semi-vertex angle r -00,

h

S: 41,r2 tan2° e e21ku udu

41, 21

ta t° 1+0 (2ikh - 1) (4.12)

s= 2- tans0 e2 iku i

which implies a scattering amplitude

I tanG2 (4.13)
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associated with the tip, and a scattering amplitude

itan20 o(21kh - 1) e2ikh (4.14)

corresponding to the edge singularity at the base. For large (but finite) kh the

latter is approximately

rh tan20 e21kh (4.15)
•. 0

which dominates the overall return at high frequencies due to its wavelength depen-

dence. In practice, however, a more accurate estimate of the base return is re-

quired, and this is considered later.

In the limit of a semi-infinite cone (h = Do) no return can come from the "ter

mination" and the second of the above contributions must be ignored. This is usually

justified on a mathematical basis by attributing a non-zero conductivity to the sur-

rounding medium (giving k a positive imaginary part), so that the second term in

2ikh(4.12) is exponentially attenuated through the factor e The only return is now

provided by the tip, and from (4.13) we have

•2
X2= tan48 (4.16)
16 0o

which is the well known "tip" answer.

With terminations other than a flat back the physical optics result will only be

affected if a portion of the cap is in the illuminated region, and consequently for a

spherically-capped cone with the origin of the sphere at the apex of the cone (or,
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indeed, on the axis of the cone at any distance X from the apex with 0 <, X4 h) the

predicted return is identical to that in equation (4.12). But if the sphere is chosen

to have its origin at a distance h + X (X > 0) from the apex, with radius

{(htan 80)2 + X2)112 (so as to achieve a join to the cone with a discontinuity in at

most the first derivative of the profile+), a part of the sphere is visible, and the

physical optics cross section is changed a..i ordingly. The far field amplitude is now

i ( {tan29 + e2 M [uotn 2e0 _ X- sec2 e.] + e21k(X+h)j}(.7

The first term arises from the tip and is as before. The second group of terms

represents the scattering amplitude associated with the join, and can be written

approximately as

S = Isc 2  
- 2ikhtan tan§ e21 (4.18)

where S is the angle between the tangents to the cone and the sphere at their junc-

tion. Hence, for the cone-sphere (8 = 0) the scattering amplitude attributable to

the join is

S - -see 2 e 2 , (4.19)
4 0

which has the same wavelength dependence as the tip contribution, but is of a much

larger magnitude for all cones except those of largest angle. It is believed that this

+The profile is simply the curve z = g(p) which defines the body.
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is an accurate estimate of the return when the first derivatives+ of the profile are

matched. Inasmuch as the surface in the neighborhood of the singularity is entirely

in the illuminated region, the assumed current distribution should not be appreciably

in error, and the most accurate experimental data available in the Radiation Labora-

tory is consistent with a scattering amplitude having this wavelength dependence,

and a magnitude differing from that in (4.19) by less than 20 percent.

On the other hand, If the kink angle 8 is not zero, the second term In (4.18)

Is present, and will dominate the return at high frequencies. The corresponding far

field amplitude is

a, 2 2 ikh (.08=-sec otans 6 (4.20)
X 0

where a is the radius of the singularity, and this is almost identical to the result

obtained by Dawson et al (1960) using circular wedge theory (see later discussion).

It is therefore obvious that in any experimental measurement of cone-sphere cross

sections extreme care must be taken to ensure accurate modeling of the surface pro-

file near to the cone-sphere join.

The third term in equation (4.17) originates at the shadow boundary of the

sphere and is known to be spurious. It arises because of the discontinuity in the cur-

rent distribution introduced by the physical optics approximation, and is independent

+The wavelength dependence of the physical optics contribution from a Junction be-

tween two surfaces is Xn-1, where n is the order of the first discontinuous deriva-
tive.
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of the presence of the cone. From an analysis of the field scattered by a sphere

(see, for example, Goodrich et al, 1961), it is seen that the only contribution from

the shadow boundary is produced by a set of creeping waves which have traversed

the back of the sphere. The associated scattering amplitude decreases exponentially

with increasing frequency, and is small compared with the specular return for all

spheres more than a few wavelengths in radius. With the cone-sphere, however,

the specular return is not present, and since the contributions from the tip and join

are quite small in magnitude (and certainly so when compared with a specular signal)

the creeping waves continue to provide a significant effect until the wavelength has

decreased to a very small fraction of the sphere radius. Nevertheless, at suffi-

ciently high frequencies the creeping waves can be ignored, and there is some slight
+

evidence (Turner and Dawson , 1960; unpublished Radiation Laboratory data) to sug-

gest that the best estimate of the cone-sphere return is then obtained by ignoring the

spurious term in (4.17). The resulting high frequency cross section is

X2
a - (tan4 o + sec 4 eo) (4.21)

2lkh
and since the term produced by the phase factor e has been omitted, (4.21)

should be interpreted as an average over a small frequency band. For small cone

angles the cross section is of order 0.02 X , which is approximately one-half that

which would have been found if the spurious term had been retained

+who also use the physical optics method to calculate the return due to a termination

produced by the rotation of an off-set spherical arc about the cone axis.
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Before leaving this discussion of the nose-on behavior, a final point of inter-

est is the transition of the cross section for the flat-backed cone to the disc answer.

As the half-cone angle r - 8 approaches r/2, with the base radius a held constant,0

the cone degenerates Into a disc whose far field amplitude Is inversely proportional

2
to X . The manner in which this transition occurs can be seen from equation (4.12)

if tan 0 is replaced by -a/h. We then have
o

S = -- (a/h)2 + e21kh(2ikh - 1 (4.22)

and by expanding the exponential function for small argument it is found that as

h -*•0 thc bracketed terms decrease in just such a way as to cancel the infinity pro-

duced by the first factor. In the limit h = 0 the far field amplitude is simply

S = 21 T.§) (4.23)

which is the known result for a disc of radius a. We note in passing that this is also

the appropriate expression for rear-on incidence on a flat-backed cone.

For angles of incidence away from nose-on the calculation of the back scat-

tering cross section by the physical optics method is again straightforward, though

more tedious owing to the asymmetrical illumination and (possibly) the varying posi-

tion of the shadow boundary as a function of aspect. Moreover, because of the inac-

curacy in the prediction of the shadow boundary effect, the usefulness of the method

is mainly limited to the determination of the specular return from the cone sides and

its side lobes. For such a calculation it is generally sufficient to assume that the
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cone has a flat back, though the type of termination will affect the manner in which

the return falls off at aspects beyond the specular direction.

If the plane wave is incident at an angle a to the negative z axis, the optics

integral can be obtained from the general expression in section 4.3 of Crispin et al

(1959). When this is particularized to the problem of a right circular cone and the

notation changed to that presently In use, the expression for the far field amplitude

becomes

S - tan 0 {Ina coos -cos atan}

2ikz'(cosa + sina tan0 cooS )
*e 0 z 'dz''d

(4.24)

where z' is measured along the axis of the body and the integration is over the filu-

minated portion. The result is independent of whether the electric vector lies In the

plane containing the axis and the direction of propagation (horizontal polarization) or

in the plane perpendicular thereto (vertical polarization).

When the direction of incidence lies within the backward cone, i.e.

0 <a < r - So, the whole of the surface is illurninated and the z' integration can be

carried out immediately to give

r sina co o, - - 2lkh tana
i- 0 - (cosa + uinatanOocoo 0)2

+ sina tan ocoo 01 e2 ikh(cosa+sina tan o 0 ]oo) do.

(4.25)
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In the special case of nose-on incidence (a - 0) the 0 integration is trivial, leading

to the result shown In equation (4.12). but otherwise the validity of (4.25) to limited

to angles a away from the specular direction 80- 1/2 (which lies within the back-

ward cone only for half angles v - 0 > r/4). The integration of the first term In0
41-

(4.25) gives

4 (1 - sin2 sec2 t3/2 (4.26)

which is the required generalization of the tip return (4.13). If in addition

khsinatan(r- 0o) << 1, the second group of terms in (4.25) can be treated by ex-

panding the exponential for small argument, leading to a simple multiple of (4.26)

but with a phase corresponding to a contribution from the base of the cone. Hence,

for incidence in the backward cone with kh sina tan(u- 0 ) << 1,

4 0 0S -j tan20(l+3s asc o)L(iho-lj

(4.27)

which should be compared with the expression for nose-on incidence shown in equa-

tion (4.12). On the other hand, if khsinatan( - 0o) >> 1 the integration of the

second group of terms in (4.25) can be carried out by the stationary phase method,

and the resulting far field amplitude is

I -1 W/4 F -o) t a 21khcos(a- 0) sec 0
4 1isVvina tan(a -80)e 0 0

(4.28)

+A result first obtained by Spencer (1951).
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The phase Is now appropriate to a contribution from the base end of the nearest

generator of the cone, and because of the restriction on kh under which the above

expression was obtained, the tip contribution is negligible by comparison.

For angles of incidence outside the backward cone only a portion of the sur-

face is illuminated, but this fact is of no concern if the stationary phase method is

applied to the 0 integral in (4.24). We then have

-1rn4 [ -Mo h0 2ikz'corf', - 0 )sec 8
sin sin - 00)se 0° e o dz,

0 0

which can be written as

S 1 rei/4 /khtan(v -O°)a 21khoos(a- 8 )seco
4 r slnc 0

- F e 2k cos(w-a)seo o 0

(4.29)

where 2C

F(t) e r dr

Ld is related to the Fresnel Integral (see, for example, Jahnke and Emde, 1945).

If ItI>> 1, F(t') - O("-) and can be neglected in comparison with the first term

in (4.29), In which case we recover the expression shown in (4.28). For small fId,

however,

85



THE UNIVERSITY OF MICHIGAN
3648-2-T

F(r) =1-1 it (

and consequently as a approaches 0 - r/2, the far field amplitude reduces to

k h3- e-iO/ see 2 (4.30)
3 o

This is the specular contribution. It is equivalent to the broadside return from a

thick cylinder whose length is the slant length of the cone and whose radius is

4/9 a sec(w - 90), where a = htan(v - 0 ) is the base radius of the cone, but this

choice of dimension is not unique, nor is it sufficient for computing the side lobes.

Indeed, the far side lobes must be calculated from equation (4.28) and to investigate

the transition from (4.28) to (4.30) it is necessary to determine S from (4.29) using

the available tabulations of the Fresnel integral. The asymmetrical nature of the

side lobes is then apparent+ even for the flat-backed cone, and can be observed in

the experimental data of Keys and Primich (1959c, d).

As previously remarked, one of the limitations of the physical optics approaca

is the inaccuracy of its prediction of the return from a shadow boundary. If a flat-

backed cone (or any finite cone whose termination leads to a "positive" discontinuity

in the first derivative of the surface profile at the Join) is viewed at or near nose-on

the shadow boundary coincides with the base of the cone, and the physical optics

result for the scattering from the base is suspect. Moreover, at high frequencies the

+This is also evident from equation (4.29) if the Fresnel integral is approximated

for small values of its argument.
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base has the appearance of a ring singularity at these aspects, suggesting that the

corresponding contribution will be dominant; even physical optics displays this fact

(see equation 4.15), but before any reliance is placed upon the magnitude which it

predicts an alternative method of derivation is desirable. This is particularly so

since (4.15) can be written as

2 ika cot(i - 0)iao
S=.tan(o-O)e , (4.31)

for fixed a, the far field amplitude tends to zero with decreasing cone angle, where-

as the analogy with the ring would suggest a limit which is finite but non-zero.

To provide a more accurate estimate of the base return at high frequencies,

a method was proposed by Siegel in 1957 (see Siegel, 1959) which is similar to one

employed by Artmann (1950) in his analysis of the thick half plane. Taking, for

example, a flat-backed cone at nose-on incidence, the Idea is to treat every element

of the edge formed by the sides of the cone and the base as a portion of an infinite

wedge on which the field is incident at an appropriate angle. By using the known sol-

ution for such a wedge, and regarding every element as scattering independently of

the rest, the net return can be obtained by simple integration providing due account

is taken of the varying polarization for the different elements. The solution origi-

nally developed was in error because of an incorrect interpretation of the polariza-

tion effect. The error was pointed out by Keller (1959) and duly corrected (Siegel

et al, 1959). Simultaneously, Keller (1959; but see 1960) published an alternative
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derivation based on his geometrical theory of diffraction (Keller, 1957), and pre-

sented the solutions+ for all aspects, hard and soft scalar cases as well as vector.

For the electromagnetic problem with nose-on Incidence the far field amplitude asso-

ciated with the base return is

21kacot(i - 0)
S= n cose e (4.32)

n

where
0

n = -- - (4.33)
2 w

and compared with the physical optics solution (4.31) which tends to zero as 0 --)w

(cone of vanishing angle), (4.32) is non-zero at this limit.

A graphical comparison of the two solutions as a function of cone angle is

given in Siegel et al (1959) and clearly shows the increasing discrepancy as 0 -) r.o

For small cone angles, the previous estimates of the base return must therefore be

abandoned in favor of that obtained by wedge theory. Accordingly, (4.15) and (4.31)

must be replaced by (4.32), but for a termination which produces only a slight kink

in the profile (or no kink at all), wedge theory and physical optics are in agreement,

and consequently the results for the cone-sphere are unaffected.

+Two errors in Keller (1959, 1960) were noted in 1960 (see Crispin et al, 1963) and

corrected by Keller (1961). The second term in equation (29) of Keller's papers
should be (cos r/n - cos 3w/n)- , and the legends attached to the two curves in
Fig. 4 should be interchanged.
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As 0 -) 1/2 (the disc), both (4.31) and (4.32) tend to infinity, and do so ato

the same rate. Neither of them now provides a satisfactory estimate of the base re-

turn. On the other hand, we have already seen that the three-term optics approxi-

mation (4.12) is successful in reproducing the correct transitional behavior, and for

wide angle cones (4.12) should be used in place of either (4.31) or (4.32). As of the

moment one must arbitrarily choose the cone angle at which to switch from (4.32) to

(4. 12), but it has been suggested (Crispin et al, 1963) that if h >> a, (4.32) should

be used; if kh << 1 << ka, (4.12); and if h and a are comparable, the mean of the

two results.

In an attempt to predict the high frequency scattering with an accuracy grea-

ter than that which can be achieved by physical optics, the cylindrical current

method has been pioposed by Dawson and Turner (1960). This also is based on an

approximation to the current distribution excited on the surface, and as such is simi-

lar to physical optics, but whereas the latter assumes that each element scatters as

though part of an infinite tangent plane, the new approach postulates a current which

is the same as for an infinite cylinder having axis and radius identical to those of the

body at the point in question. It is therefore limited to bodies of revolution, but for-

mally at least it is "valid" for a much wider range of radius to wavelength ratios

providing that the cylinder solution is used in its exact form. If the incident electric

vector is normal to the plane containing the direction of propagation and the axis of

the body (vertical polarization), the far field amplitude obtained by this method is
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i1 2ikz'o°sa dz' (4.34)

where
2 J' (kR sina):fl

S (-1)n (1)' (4.35)
-0) H (kR sina)

n

and R Is the radius of the body at a distance z' along its axis. For horizontal

polarization the solution differs only In having S1 replaced by 82, the corresponding

sum over the undifferentiated functions.

With all except the most trivial bodies, an exact analytical evaluation of the

above integral is impossible, and a digital computer is almost essential if the full

advantages of the method are to be realized. Nevertheless, if kRsina »> 1, -S 1

and S2 can both be approximated by the function

1 V- el(w /4-2kRsina)
2 VukRslna e(

and when expressed in terms of the electric vector the scattering amplitudes for ver-

tical and horizontal polarization are now Identical. This is the same type of polari-

zation Independence displayed by the physical optics method. The resulting expres-

sion for 8 is

sin fr 8si/4 e2Ik(z'oosa - Rslin) dz4

-~ akinc ei/ dz'e (4.36)

with R = R(z9), and this has been evaluated by Dawson and Turner (1960), Turner

(1960) for bodies of various shapes. In particular, for the flat-backed cone
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R = -z' tan 0o, 04• z' 4 h, and the far field amplitude associated with the return

from the cone sides is then of the same form as that shown in equation (4.29), but is

smaller +by a factor (1 - tan 0 cots). This implies a reduction in the specular con-

tribution by a factor sec2 . Analogous results for the cone-sphere have also been0

given by Dawson and Turner (1960), and these reveal a similar discrepancy with the

physical optics predictions.

In spite of the functional differences between the two sets of formulae, the

differences in their numerical values are only significant for wide angle cones, and

the experimental data available at the moment is not sufficient to show which of the

two methods is more accurate. For a body of revolution the cylindrical current

method would seem to have the greater potential, but is possible that the intrinsic

accuracy is lost in the approximation to 81 and S2. Certainly this approximation

prevents any consideration of nose-on Incidence, and for this range of aspects we

are forced to rely on physical optics, or the other high frequency approximations

described In this section.

+For a body of revolution whose dimensions are greater than a wavelength or so and

whose surface is half in shadow, Turner (1960) claims that the two methods are, in
fact, equivalent. However, the proof appears to assume that R is independent of z1,
and since the body Is then a cylinder of constant radius, this is the one case for
which the conclusion is obvious.
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4.3 The Resonance Region

The resonance region can be regarded as the frequency range for which the

wavelength is comparable to a major dimension of the body. It is intermediate to the

ranges for which the Rayleigh and optical (high frequency) laws apply, and is usually

characterized by the presence of large oscillations in the back scattering cross sec-

tion as a function of wavelength. It also poses one of the severest challenges to the

theoretician since it is here the the transition between two contrasting types of scat-

tering behavior takes place.

In attempting to investigate this region it is natural to consider the possibility

of extending the techniques appropriate to the neighboring frequency ranges. By

including more terms in the low frequency expansion (4.1) It may be feasible to pane-

trate the region to some small extent, but since the series has a finite radius of con-

vergence (Senior and Darling, 1963) this procedure is strictly limited both in theory

and in practice. On the other hand, no formal restriction of this type exists at the

high frequency end, and at least a partial coverage of the resonance region can be

achieved by applying the pseudo asymptotic techniques available at high frequencies.

In the case of a flat-backed cone the necessary extension can be obtained

using the geometrical theory of diffraction, and for nose-on incidence the appropri-

ate formulae have been derived by Keller (1960). Whereas the wedge solution (4.32)

corresponds to those rays which are scattered by the base and return directly to the

receiver, the second order term Is produced by rays which traverse the base of the
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cone, and are therefore diffracted twice before being observed. The far field ampli-

tude correct to this order is now

2w kaot(-0c)f 1 s Ze 2 k- 1i/4 Cosr 3w

n n (rka)l/2 (cos- --- w,21
11 2n

(4.37)

where n is defined in equation (4.33), and the curves shown in Figs. 10 through 20

are based on this formula. The agreement between theory and experiment is

remarkably good even down to values of ka of order unity. Since the exponential

within the braces in, (4.37) has a negative coefficient for all cone angles, the maxima

in the cross section occur at

ka = (m + 5/8)r

m = 0, 1, 2..., and the minlna when

ka = (m + 9/8)r

(see, for example, Fig. 4 of Keller, 1960). The curve Intersects that of the Ray-

leigh cross section at around ka = 1, and between them these two formulae are

sufficient to indicate the variation of the nose-on return throughout the resonance

region.

For angles of incidenoe away from nose-on an accurate determination of the

back scattering cross section of a flat-backed cone Is not so important for most

purposes, and because of this the formulae have received less attention. In particu-

lar the geometrical theory of diffraction has only been taken as far as the first order
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(high frequency) term, but it may be appropriate to summarize the formulae and

give a few remarks about their applicability.

If the incidence is at an angle a • 0 but within the backward cone the far

field amplitude corresponding to (4.32) is

S = u() + u(-a) (4.38)

(Keller, 1960) where+

u(a) -. 1 cot-- e Ii(w/4 - 2kacosec 00coo(&-00))
a 2n .siana

co- -006-
n n

with the upper sign for vertical polarization (or soft body) and the lower for hori-

zontal polarization (hard body). We observe that u(a) -- oD as a -+ 0: this is a con-

sequence of the caustic which exists along the continuation of the cone's axis.

The above expression also holds in the aspect range 1/2 < t < - providing
3z+2ct 2u-w

the term coo 3 is replaced by coo 2 , but is infinite at a = w. This is
n n

again attributable to a caustic and to the differing wavelength dependence which then

characterizes the solution. Physically the increasing value of S is associated with

the specular lobe, and at a = r the contribution (4.23) is present and dominates the

return through its lower wavelength dependence. Inasmuch as these are all first

+ (-a) must be interpreted as i Toia in the formula for u(-a).
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order results only, they give no information about the behavior of the field in the

immediate vicinity of a = r, and until such time as more detailed results are avail-

able, the only method for estimating the transition is to use the physical optics solu-

tion for a disc. We then have

-2lka cot(w - 8)cosa
S me--"a j (2kasina) e (4.40)

2 tana 1

(Crispin et al, 1959), which can be used for those angles a near to r at which the

magnitude of (4.40) exceeds that of (4.38).

In the aspect range s-0 <a < r/2 the second diffracted wave does not0

appear, and the geometrical theory of diffraction then gives

S = u(a) . (4.41)

This is analogous to the physical optics result (4.23), and each can be written as

S~~~~ ~ ~ = •,0 -- e1(/4 - 2kaeos(a-0 0) cosec 0o01} 4.2
s =A(a,0o) V • ' ~ ~ } (4.42)

where A is a real quantity, but the values of A are quite distinct both in form and

In magnitude. Unfortunately, a study of the experimental data does not provide a

clear-cut indication of the formula which is preferable. Because of the inaccuracy

associated with the physical optics prediction of the return from a shadow boundary

(the base is part of the boundary at these aspects) it would seem that equation (4.41)

should be more accurate, and certainly it does explain some of the dependence on

polarization observable in the dati (we shall later examine another source of a
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polarization-dependent return not predicted by either theory). On the other hand,

(4.41) is discontinuous+ at a i- -0 (of equation 4.38), whereas the optics result is0

continuous, and it is also infinite at a = 8 - r/2. This last is due to the specular0

return from the sides of the cone, and in a neighborhood of a = 0 - x/2 we have no

alternative but to use (4.29), replacing it by (4.41) when the magnitudes of the two

contributions have become comparable.

In passing we note that the aspect range i-0 < a < r/2 is one for which a

portion of the conical surface is in shadow, and it is now possible for a creeping

wave contribution to appear. This is a polarization-dependent phenomenon and has

been discussed by Goodrich et al (1958, 1959) in connection with the radiation pat-

tern of slots on a cone. Its importance in the scattering. problem has not yet been

assessed, but it is unlikely to be significant.

Let us now consider the cone-sphere. The theory given by Keller (1960) pre-

dicts that for incidence within the backward cone the scattered field is composed of

contributions from the tip and from the shadow boundary. The first of these can be

obtained using physical optics, and is given in (4.26). The second is attributable to

creeping waves which have traversed the back of the sphere, and since the separa-

tion between the cone-sphere join and the boundary Increases with Increasing fre-

quency, it seems reasonable to estimate this return by reference to the known

'It is also discontinuous at a = w/2.

96



THE UNIVERSITY OF MICHIGAN
3648-2-T

sphere solution. Following Keller, the appropriate far field amplitude is then

S = -_ (kb)4/3 e1kbfr + 20coacosecfu-8 )) £GHe" H(kb) 1SOkb)

(4.43),

where b = asec(r-0o) is the radius of the sphere and GH, GS, tS, rH are cer-

tain parameters which are defined in terms of Airy functions and their zeros. The

second term is negligible in comparison with the first.

When the relative magnitudes of (4.26) and (4.43) are examined, it is found

that for all except the very highest frequencies the latter is dominant in spite of its

exponential decay. Thus, for example, when 0 - 5,r/6 and a = 0, equality between0

the two contributions is not reached until kb = 45.8 and consequently, as kb in-

creases, the back scattering cross section a/X2 should display an oscillation of

increasing amplitude which reaches a maximum when kb = 45.8, and thereafter

decreases. In particular, for kb less than (about) 15 the curve should be almost

monotonic with the cross section given by the creeping waves alone; and for kb

greater than (about) 80 the cross section should be effectively constant and equal to

the tip contribution.

These results do not agree with experiment. Unfortunately the most reliable

data is limited to narrow angle cones with kb < 14, and only a few isolw 4d measure-

ments have been made at higher frequencies or with cones of wider angle (0 <o5Y/6),

but on this evidence equations (4.26) and (4.43) are inadequate. It is clearly unre-
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alistic, of course, to expect that the formulae will be valid for kb of order unity

(even the approximation to the creeping wave return is of insufficient accuracy for

this purpose), but the magnitude and trends of the measured values are quite dis-

tinct from those indicated by the theory even for kb = 0(10). Throughout the fre-

quency range 5 < kb < 14 the observed nose-on cross section oscillates in a rela-

tively uniform manner with a period which is In good agreement with that Implied by

(4.26) and (4.43). The average level of the return, however, is much greater than

predicted, as is the amplitude of oscillation. This amplitude shows no significant

variation throughout the range, and certainly there is no evidence of the expected

build-up towards the higher frequencies.

At nose-on incidence a considerable improvement in the theoretical predic-

tions can be obtained by including a return from the cone-sphere join and by using a

more complete representation for the creeping wave contribution. This is essen-

tially what has been done by Kennaugh and Moffatt (1962) in the course of applying

their "Impulse approximation!' technique (Kennaugh and Cosgriff, 1958). From the

data available in the Radiation Laboratory it would appear that the first of these con-

tributions can be estimated by physical optics with an error which is at most 20 per-

cent for kb v 10. The far field amplitude associated with the tip and the join is

then

B I - tan2 _ec2e2ikbcocot° 0o (444)
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which is believed to be the correct high frequency solution for a cone-sphere at

nose-on incidence. For narrow angle cones the inclusion of the second term pro-

duces a large increase in S, and removes most of the discrepency between theory

and experiment at the highest frequencies (kb - 80) for which data is available. At

such frequencies the creeping wave contribution can be calculated with sufficient

accuracy using (4.43), but the error increases with decreasing kb. For kb of ordez

10 the error is significant, and a more complete expression which is correct to

within 1 percent for kb ) 5 is

S= (kbj"3 e i{1l+2cosacosec(w1Ooh + 11/3 1 { + e i r 13
2 P ,() f, 1

23 9x 1/ 2/
+ exp2 ( -eir6 ~r~"~ ir6 60

(2 1,31 (4.45)

(Senior and Goodrich, 1963) where

S- 1.01879...

and Ai(-P) = 0.53565...

At still lower frequencies even this becomes inadequate owing to the greater impor-

tance of the higher order waves which are neglected in (4.45), and no simple formu-

la for the shadow boundary return is then available. On the other hand, numerical

values can be obtained by subtracting the specular contribution (Logan, 1960) from
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the complete far field amplitude computed from the Mie series. This has been done

by Gent et al (1960) for selected values of kb and, implicitly, by Kennaugh and

Moffatt (1962).

In spite of the Improvement in the predictions of the nose-on behavior result-

Ing from these modifications, there is still a systematic discrepancy between theory

and experiment which is clearly evident for kb greater than (about) 4 and which

probably persists until such time as the creeping wave contribution Is negligible.

As yet there is no theoretical method for calculating the additional return, though

some of its properties can be determined by detailed analysis of experimental data.

For angles of incidence away from nose-on, the data available for the cone-

sphere is less extensive; but on the basis of those patterns which have been taken, a

few general comments about the back scattering cross section in the resonance re-

gion can be made. In the immediate vicinity of a = 0 the behavior depends on the

relative phases of (4.44) and (4.45). Since the polar diagram of the return from the

join is peaked at nose-on and falls to zero in an angle comparable with the half cone

angle r-0o, a/),2 has a maximum or minimum at a = 0 if (4.44) and (4.45) are in

phase or out of phase respectively, changing over to a minimum or maximum

respectively at a value of a which is fractionally greater than r-0 . As a in-o

creases beyond this, the cross section displays a marked dependence on polarization

With vertical polarization r/X2 oscillates with a relatively small amplitude

about a level which is in good agreement with that determined by (4.45) alone, and
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this continues until the side lobes of the specular flash are reached. The latter can

be obtained from (4.29), and depending on the phase relationship between (4.29) and

(4.45) there may be a few deep minima in the aspect range for which the two contri-

butions are comparable in magnitude. The specular flash itself is in excellent

agreement with the scattering amplitude shown in (4.30), but for the side lobes be-

yond a = 0- v/2 it is necessary to take into account the presence of the spherical

cap in applying the physical optics method. The results obtained when this is done

are reasonably accurate. For a greater than (about) I JO" the cross section is

effectively constant out to 1800, with a value which corresponds quite closely to the

specular return from the sphere. The appropriate far field amplitude Is therefore

S = - -kbe e
(4.46)

(Senior and Goodrich, 1963). Such discrepancies as are apparent may be due to the

reflection of the creeping wave on the sphere at the join with the cone, but the result

ing contribution should be small, and has not been observed in experimental data

with kb > 8. We note in passing that Moffatt (1962) has proposed a modification of

the physical optics integral for use in predicting the cross section at a = 1800. Te

agreement with experiment is probably within the experimental error. On the other

hand, the data obtained by the Radiation Laboratory does not reveal the need for any

modification (or addition) to (4.46).
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With horizontal polarization the nose-on peak or trough is somewhat nar-

rower than above, and beyond the turning point at a-., v-0, cr/X2 falls away rapid-

ly. Apart from a few large but isolated peaks the cross section out to the side lobes

of the specular flash is many db below that for vertical polarization, and this is

explainable by the absence of the dominant creeping wave return (the cone sides

prevent any such return from reaching the receiver without first undergoing a scat-

tering at the tip). Because of the striking difference in behavior at the two polari-

zations it would not appear that the cylindrical current method (which is, in prac-

tice, independent of polarization) is applicable to this aspect range, though Its use

has been advocated by Moffatt (1962).

Through the region of the specular flash and its side lobes, the cross section

shows little or no variation with polarization, and once again the physical optics

method can be employed in its prediction, but beyond a = 1000 (approx.) an inorea-

sing oscillation sets in, and out to 1800 the behavior is quite distinct from that ob-

served with vertical polarization. The average level is somewhat greater than that

indicated by the sphere return alone, and the oscillation increases in amplitude

reaching a maximum some few degrees short of rear-on. At a = 180 the cross

section varies from local maxima to local minima as a function of frequency and its

value here is identical to that with vertical polarization.

It is believed that these oscillations are attributable to travelling waves ex-

cited on the surface of the body. Such waves can produce a significant contribution
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to the back scattering cruse section only with horizontal polarization, and Lhe theory

associated with them predicts an aspect-sensltive return which is similar to that

found at near rear-on aspects with the cone-sphere, and in the aspect range between

a = r-B0 and the side lobes of the specular flash for a cone with almost any termi-

nation.

When a long thin body is illuminated at near not .- on Incidence the initial

scattering is predominantly in the forward direction. A portion of the energy is

guided along the surface, leading to a current distribution which is identifiable with

a wave travelling down the body. When this reaches the further end a fraction of it

is reflected back in the direction from which it came, and ultimately radiates in the

back scattering direction. As a result the observed signal appears to originate at

(or near) the rear of the body, and suggested to Peters (1958) and Belkina (1957) that

this type of structure should act as a travelling wave antenna. By likening it to a

long thin wire, Peters obtained an expression for the far field amplitude in the form

S = yF(O) (4.47)

where y is the (complex) current reflection coefficient and F(8) is a pattern factor

which is a function of the length of the wire in wavelengths and of the effective phase

velocity along the surface.

It is obvious that the method is only as accurate as is the simulation by the

wire, and is certainly limited in application to bodies whose length is large in com-

parison with both the wavelength and the width. Because of the basic model the
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results are markedly dependent on the polarization, and the travelling waves provide

a significant contribution to the cross section only at angles away from nose-on

(F 2 0 for 0 = 0) with horizontal polarization. With any actual body having signi-

ficant width, a small contribution with the other polarization is to be expected, but

cannot be estimated using Peters' theory.

In spite of the inaccuracies Inherent in the model, the method has proved ex-

tremely useful in practice. Applications to the finite cone have been given by Cris-

pin et al (1959) and Dawson (1960b), and to the cone-sphere by Gent et al (1960), and

for such purposes it is generally sufficient to assume that the phase velocity along

the surface is the same as that in free space. The expression for F(O) then reduces

to

cot2 
22

F(-) 2k- 0.4228 (ksin 2) (4.48)

where .L is the overall length of the body (or the distance from the nose to the

reflection point, if this is different). The maximum in the pattern occurs at

0 ,- 49.35(4/i) 1 / 2 degrees, (4.49)

which decreases as k.L increases. In a neighborhood of this angle the pattern is

similar to (sinx/x)2 in shape. The maximum value of S is

104 725Smax' Zak-1,- 0. 4228 (.0
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and the important role played by the reflection coefficient is now apparent. It is

therefore unfortunate that no method is yet available for computing y in terms of the

shape parameters of the body. By analysing a large volume of experimental data,

Dawson (1960a) has suggested that y is proportional to sin2 0, with a constant of

proportionality which decreases from unity if the termination is sharp, to zero when

the radii of curvature at the termination are several wavelengths or greater. There

is no theoretical support for this suggestion and the dependence on 8 appears ques-

tionable. Other (quite different) estimates of y have been given by Siegel (1959),

but even without a precise knowledge certain general statements can be made.

it the termination is sharp, y is almost certainly independent of X to the

first order: a then decreases with decreasing X at an extremely slow rate, andmax

in most practical cases (4.50) will be comparable in magnitude to the nose-on return

from a flat base (equation 4.32). It will therefore be the dominant feature of the re-

turn in the aspect range between the nose-on and specular regions when the polariza-

tion is horizontal, and the large peaks which are observed are in approximately the

positions predicted by the theory. It will also be significant at rear-on aspects for

a cone-sphere, since the reflection point is now the apex.

If the rear of the body Is smooth the reflection coefficient will be much smal-

ler, and depending on the precise shape of the body the reflection may occur at some

point where a higher derivative of the surface proffle has a sharp discontinuity.

This is believed to be the case with the cone-sphere, and the experimental data on
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the scattering cross section at near nose-on aspects is suggestive of a reflection at

the cone-sphere join, with y proportional to X (or possibly some higher power).

Since the nose-on return also has this wavelength dependence, the relative impor-

tance of the travelling waves is unchanged.
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V

EXPERIMENTAL DATA

The interest in oone-like structures has increased conuiderably during the

last few years and a wealth of experimental data is now extant. Unfortunately a good

deal of this still exists only in the files of the laboratories responsible and will

doubtless remain so until some central organization can undertake (or delegate) the

compilation task. Because of the needs of a particular laboratory at a given time,

the data which they obtained may have been restricted to a few isolated cases and is

in that sense "unpublishable", but when viewed in conjunction with comparable data

obtained elsewhere it could be extremely valuable in filling in the "gaps" which exist.

The following listing is the result of a search through the open and classified

literature, together with such unpublished data as the authors are personally aware

of. It is certain that the list is not complete and it may even contain only a small

fraction of the measurements which have been made. We would be grateful for Infor-

mation about any data which we have unintentionally omitted.

In almost every case the quantity which has been measured is the back scat-

tered cross section, and attention will be confined to this; little is known about the

phase or about the bistatic behavior. The flat backed cone is considered first, fol-

lowed by the cone-sphere (referred to as the "carrot" in some British publications)

and, in the third section, by a brief resumn of the data for cones with other types of

terminations.
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5.1 Flat-Backed Cone

Let a denote the radius of the base and ir-0 the half cone angle.0

Using ow equipment operating at 3.02, 3.8, 9.3 and 9.9 KMo, Brysk et al

(0959) have measured the nose-on cross section in the following cases:

- = 7.50 : ka= 0.118 to 3.0 (25 values)

7-B = 9.60 : ka = 0. 143 to 3.0 (21 values)
0

-O0 = 120 : ka= 0.165 to 3.0 (26 values)
0

9-O = 45°0 ka= 0.327 to 3.2 (20 values)
0

r-0 = 60 : ka=0.490 to 4.8 (20values)0

Data was also obtained for

-0= 40 ka = 0.187 to 1. 05 (14 values)

using the same equipment at 8.465 and 9.9 KMo. The presentation is in the form

of graphs, a/ia2 versus ka, on a log-log scale.

Keys and Primich (1959a) have used two ow systems operating at 8.75 and

35 KMc to obtain the nose-on cross section for cones of half angle r-0 = 40, 200
0

and 600 with ka varying from 0.5 to 9.5 (approx.). The data is presented as

graphs of a/t2 versus 2a/X on a log-log scale. The results for the widest angle

cone are partially reproduced in Keys and Primich (1959b), and corresponding values

for ir-0 = 7. 50 and 300 are also provided.

Probably the most complete set of data is that given in Keys and Primich

(1959c and d). A pulsed system was used operating at 35 K~c with a pulse length of
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10 millimicroseconds. The back scattering croas section A/X2 is shown as a func-

tion of aspect, 0 to 3600, for vertical and horizontal polarization and for the follow-

ing values of ka:

ka - 0.933, 1.40, 1.86, 2.33, 3.08, 3.80, 4.18

4.56, 5.31, 6.06, 6.79, 7.45, 8.29, 9.02.

In the first of the above reports the cone angles treated have

-80 - 4°, 7.50 , 9.6 0 , 12°, 150 and 200

and in the second

0
xr-9 = 30°, 37.5°, 450, 52.50 and 600.

The overall accuracy is stated as t 2 db.

If the nose-on cross sections are read off from these patterns and converted

2
to values of ol ra , the points shown In Figs. 10 through 20 areobtained. The

curves have been calculated using equations (4.7) and (4.37) (Siegel's modified Ray-

leigh theory and Keller's second order theory), and are In good agreement with the

data. Four typical aspect patterns are reproduced In Figs. 21 through 24 and In the

following four figures the measured cross sections for the specular flash are plotted

0
as functions of ka for zr-8 0= 4°, 15°, 360° and 60°. The straight lines are the

physical optics predictions (see equation 4.30). In most cases the discrepancy is no

more than a factor 2 at most and because of the nature of the theoretical method the

'The values for the left and right flashes are both presented if they differ by more

than 1db.
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agreement improves with increasing r-0 or ka. We note in passing that the cylin-
0

drical current prediction (also plotted in Figs. 25-28) is smaller than the physical

optics by a factor sec 40 in the cross section. The factor increases from 1.00960

when r-8 = 40 to 4 when r-8 0 600 and on this basis it would appear that the

"approximated form" of the cylindrical current method is somewhat inferior to

physical optics.

For a cone of half angle r-B = 7.5 a series of measurements of the nose-

on and base-on cross sections have been made by Olte and Silver (1959) using a ow

ground plane system at 9.33 and 9.331 KMc. The base radius was changed by

adding "discs" to one of several different basic cones, giving a coverage of the range

ka = 1.90 to 6.20

with a total of 15 values shown for none-on and 14 for base-on. The results are pre-

sented in the form of graphs of o/c0 (in db) versus L/, on a linear scale, where L

is the length of the cone and a is the scattering cross section of a 6 in. diameter

reference sphere.

The same equipment was earlier employed by Shostak and Angelakos (1957) to

measure the scattering pattern as a function of aspect for a cone of half-angle 7. 5.

At that time, however, the accuracy of the system was poor and the e.periments

were later repeated by August and Angelakos (1960). For r-O B 7.50 ando

ka - 1.53, 3.14 and 6.18 the measured nose-on and base-on cross sections are
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listed and In each case the aspect pattern, 0 to 1800, for vertical polarization is

shown. Measurements on these same models were also reported by Honda et al

(1959).

Add'tonal results for cones with r-B - 7.50 have been obtained by the Cor-o

nell Aeronautical Laboratory and Microwave Radiation Co., Inc., and the measured

values of the nose-on cross sections were communicated to K. M. Siegel. No infor-

mation about the equipment is available, but for ease of reference the data is listed

below:

o/X3 (in db)

ka Hor. Pol. Vert. Pol. Organization

38.7 19.0 19.0 Cornell Aeronautical Lab.

23.7 13.4 13.4

7.4 7.5 7.2

26.4 21.9 17.3 Microwave Bad. Co., Inc.

6.6 1.2 2.1

3.3 -6.0 -5.4

1.64 -2.8 -3.1

The only remaining measurement of which we are aware was carried out at

the Royal Aircraft Establishment in England using a pulsed system at X band

OL - 3.2 em). For r-8 =1 50 and ka - 9.016 the soattering pattern as a function

of aspect, 0 to 1200 has been published by Dawson and Turner (1960). The results

for both polarizations are given, and in Dawson (1960b) the aspect range is extended

out to 180l .-- III
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5.2 7Ue Cone-fthere

Much of the original data on the cone-sphere has appeared only in classIfied

publications and this in true, for example, of the work carried out at the Royal

Radar Establishment using a cw doppler system at 9.37 KMc (X = 3.20 cm). Gent

et al (1980) have reported measurements on 50 similr cone-sphere models with

7- 150 and
0

b/). = 1. 00 (0. 01) 1. 06, 1.08, 1.105, 1.125 (0.025) 2.125

where b is the sphere radius. With each model the back scattered cross section

was recorded for horizontal polarization at 1~ 0increments in the aspect angle In the

range ±50 about the nominal nose-on position and from the symmetry of the result-

ing curves the precise value of the nose-on cross section was determined. In six

cases (b/,X - 1. 01, 1. 08, 1.125, 1. 925, 2. 00 and 2.075) the patterns for

-2 0 < a < 200 (or greater) are presented, together with the complete asoect pattern,

0 to 3660 , for the model having b/)L-1. 02.

During the past year, however, data on the cone-sphere has started appear.-

Ing in the open literature. The first such release was by Kennaugh and Moffatt (1982

who used a ow X-band radar to measure the nose-on cross section of a series of

cone-spheres having

7-O - 15 0 and kb-lI to 7 (39 values).
0

The spacing of the points provides a reasonably complete coverage of this range in

kb and serves to extend the data of Gent et al (1960) almost to the edge of the
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Rayleigh region. The results are presented in the form of a graph of ob/rb in db

versus kb on a linear scale. A larger version of the graph has been provided by

Moffatt (1962). These points have been renormalized and appear in Fig. 29.

The most extensive data so far obtained has recently been reported by Blore

and Royer (1962). Using the 8.6 mm pulse equipment of the Defence Research Board

In Canada the following nose-on cross sections have been measured:

r-0 = 7.50 kb - 0.4 to 2.8 (30values, approx.)0

i-0 0f= 150 kb = 0.2 to 9.6 (105 values, approx.)0

r-9 = 20° kb - 0.5 to 9.5 (80 values, approx.)0

r-0 0 = 300 kb = 0.2 to 9.6 (105 values, approx.)0

i-0 - 37.50 kb = 0.2 to 5.7 (85 values, approx.)0

All values are the average of at least two measurements with both horizontal and

vertical polarization, and are believed accurate to t 0.5 db. The results are pre-

sented in the form of graphs of a/X2 in db versus 26/X on a linear scale, and in

Figs. 29 and 30 we have reproduced the curves for two of the cone-spheres.

Isolated measurements on single models have also been carried out at the

Royal Aircraft Establishment in England using an X-band pulse equipment, and the

data Is available in their reports. For the cone-sphere having r-0 = 150 andO

kb - 44.9 Dawson and Turner (1960) give the aspect patterns (00 to 800) for horizon-

tal polarization, and the analogous results for kb = 6.28 have been presented by

Dawson (1960b). With this same cone angle, but kb = 18.70, 43.89 and 89.77,
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Turner (1960) has provided aspect patterns out to 700 for vertical polarization, and

also shows the results for a cone-sphere with r-8 - 250 and ka = 30.0.o

The above is a complete iating of the published data on the cone-sphere

known to the present authors, but it is certain that many of the scattering measure-

ments for this shape have not yet been reported in the literature. An an illustration

of this fact, the following measurements on a cone-sphere having -B0 - 12.50 ando

b - 4.5187 cm have been carried out by the Radiation Laboratory, and this is only

one of the many cone-sphere models which have been investigated:

Aspect patterns 0 to 3600:

2.67 (0.10) 3.07 KMe, horizontal polarization

8.58 and 9.375 KMo, horizontal and vertical polarization

8.5, 9.3, 10.0 and 31.97 KMo, vertical polarization

Aspect patterns 60 to 500:

7.98, 8.1, 8.34, 8.43, 8.58, 8.8, 8.93, 9.0,

9.15, 9.3, 9.6, 9.8, 9.954, 10.11, 10.43, 10.97,

and 11.97 KMc, vertical polarization.

At each of these frequencies 16 or more independent measurements of the nose-on

cross section have been made to ensure the most accurate values possible over a

complete cycle of the oscillation described in Section 4.3. All measurements were

made with a ow system. It is hoped to publish at least some of this data in the near

future.
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5.3 Other Terminations

For terminations other than a flat back or a sphere with no discontinuity in

the first derivative at the join, a comparison of the experimental data Is more diffi-

oult owing to the variations in the structural features of the individual models.

Nevertheless, it may be helpful to mention some of the data which is available for

more general conical shapes.

rur two flat-backed ocnes mounted base to base with r-e = 200, Blore and0

Royer (1962) have measured the nose-on cross section for

ka - 0.3 to 9.3 (60 values, approx.)

where a is the radius at the join. These same authors have also given data for

doubly-rounded cones (the above shape, but with the junction of the two cones roundes

off) with -B 7.50, 200 and 37.50.

Four different rounded flat-b.oked cones have been investigated by Turner

(1960) and for each the X-band aspect Iatern, 0 to 700, for vertical polarization is

presented. If a denotes the maximum radius and 6 is the radius of curvature at

the join of the oone and the base, the models studied have the following speoiflcatlons

r-8 -150 ka - 43.89 8/k = 3.17

W-8 - 15° ka - 44.89 6/k - 3.17
0

W-8o0 -150 ka - 89.77 8/k - 3.17

r-B - 150 ka - 89.77 5/k - 6.35
0
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The same type of shape has also been considered by Dawson (1960b), who gives the

aspect pattern, 0° to 600. with horizontal polarization for the following models:

W-0° = 150 ka - 6.28 6/X - 0.319

r-0 - 150 ka - 6.28 6/k - 0.639

1 0 - 150 a k 6.2 6/X - 1. 435

W-8 = 150 ka - 18.84 6I - 1.5

For terminations which are even more complex, including the "cubic capV,

reference should be made to Dawson (1960b), Kell (1960) and Melling (1960).
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